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ABSTRACT

A growing number of studies claim to decode mental states using multi-voxel decoders of
brain activity. It has been proposed that the fixed, fine-grained, multi-voxel patterns in
these decoders are necessary for discriminating between and identifying mental states.
Here, we present evidence that the efficacy of these decoders might be overstated. Across
various tasks, decoder patterns were spatially imprecise, as decoder performance was
unaffected by spatial smoothing; 90% redundant, as selecting a random 10% of a decoder's
constituent voxels recovered full decoder performance; and performed similarly to brain
activity maps used as decoders. We distinguish decoder performance in discriminating
between mental states from performance in identifying a given mental state, and show
that even when discrimination performance is adequate, identification can be poor.
Finally, we demonstrate that simple and intuitive similarity metrics explain 91% and 62%
of discrimination performance within- and across-subjects, respectively. These findings
indicate that currently used across-subject decoders of mental states are superfluous and
inappropriate for decision-making.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent neuroimaging studies either explicitly claim or
strongly imply that mental states can be decoded from pat-
terns of brain activity. By fitting complex statistical models to
functional magnetic resonance imaging (fMRI) brain scan re-
sults, these studies attempt to decode feelings, thoughts, de-
cisions, intentions, and behaviors (Gabrieli, Ghosh, &
Whitfield-Gabrieli, 2015; Gianaros et al., 2020; Haynes et al.,
2007; Kragel, Koban, Barrett, & Wager, 2018). If truly success-
ful, such approaches would break the code of mental states
and suggest the ability to “read the brain” of every human
being, at least for the mental states for which such models
have been constructed. Here, we systematically examine the
validity of such claims.

Decoding predicts unknown experimental variables from
brain responses. In contrast, encoding models the statistical
dependence of brain responses on experimental variables. In
either case, decoders and encoders are typically created from
task fMRI studies, in which investigators deliver a stimulus
(independent variable) and observe brain activity (dependent
variable) (Hu & Iannetti, 2016; Naselaris, Kay, Nishimoto, &
Gallant, 2011). Encoding models are consistent with this
data-generating process while decoding flips the independent
and dependent variables. This switching of variables is also
referred to as reverse inference. Conceptually, decoding and
reverse inference are one and the same: The use of brain
activity—a response to a stimulus—to predict the applied
stimulus. However, it has been argued that decoding is
“principled” because the encoding map is not used as the
model; instead, a decoding model is created (Poldrack, 2011;
Varoquaux & Thirion, 2014). Yet, decoding itself is still
incompatible with the data-generating process and in-
troduces difficult statistical and epistemological problems.
Statistically, can we build a model that is both sensitive and
specific? Epistemologically, what can we learn about the brain
from decoding? This paper will unpack the former question,
providing an in-depth analysis of decoders, their properties,
and different decoding tasks. From our analyses, we draw
broader conclusions and provide general recommendations
for decoding studies.

Statistically, encoding models brain activation patterns
caused by external stimuli or internal cognitive processes.
This is accomplished through mass-univariate general linear
models of brain responses. Since a voxel's activation time
series is analyzed as a function of one or more explanatory
variables, the problem is well-posed—encoding models have
unique solutions that continuously map the stimulus to the
response (if maximum number of explanatory variables is less
than or equal to the number time points). On the other hand,
when predicting a stimulus (or mental process) from voxel
responses, the number of voxels—in this case the explanatory
variables—is usually much larger than the number of obser-
vations, which leads to an ill-posed problem with infinite so-
lutions. Thus, for most decoding problems, there are an
infinite number of possible decoders, yielding the superiority
of any decoder or set of decoders, along with the properties
that make a decoder unique, uncertain.

Decodability—how discernible a mental state is, given a
brain activity pattern—is predicated both on the brain activity
properties of the task being discerned as well as the goal of the
decoding. Intuitively, decodability is analogous to discerning a
breed of dog; breeds that look more similar will be harder to
distinguish. The literature claims decoders can (1) discrimi-
nate between mental states, (2) identify mental states, and (3)
capture additional state-related measures (stimulus or
perception intensities). A dog breed metaphor can more
tangibly elucidate these goals: Consider a pug (a decodee) and a
French Bulldog (a comparator)—two breeds that may look alike.
If one is familiar with a pug's unique physical features—small
stature, short snout, wrinkled face, folded ears, curled tail,
etc.—then such features can serve as the decoder for a pug.
This decoder can then be used to perform the three decoding
tasks. Specifically, discrimination (goal 1) is akin to deciding
which dog is a pug when the pug and French Bulldog are next
to one another. Identification (goal 2), instead, is akin to saying
whether a single dog is a pug when there are no other dogs
around, and it is intuitive that one must be more confident of
the properties of pugs not to mistakenly label a French Bulldog
as a pug. Finally, capturing a continuous measure (goal 3),
such as perceived intensity of a state, is much like trying to
judge a dogs age. Although discrimination and capturing
continuous measures have been discussed and illustrated for
various mental states, less attention has been given to iden-
tifying a certain mental state from a given pattern of brain
activity.

The pattern of mental state decoders arises from weights
assigned to its constituent voxels. In this paper, we deal with a
specific class of decoders that we call fixed-weight deco-
ders—each voxel is assigned its own weight. Voxel weights are
derived in three stages. First, general linear models (GLM)
generate a brain activity map (correlation between the activity
in each voxel and the task). This is a basic encoding model
since the task is the independent variable and voxels are
dependent variables. Second, GLM is used to contrast the ac-
tivity maps from a task or state of interest (a decodee; e.g., pain)
to one of no interest (a comparator; e.g., touch), and its results
are thresholded (a contrast map). The thresholded contrast
map is used to constrain the spatial extent of the decoder.
Finally, “machine learning” models are used to tune the
weights in the thresholded contrast map to optimize its pre-
dictive performance (Liang, Su, Mouraux, & lannetti, 2019;
Wager et al.,, 2013); the result is a relatively sparse, fixed-
weight decoder with a fine-grained pattern (a decoder). These
models are a conceptual demarcation from the activity map
since they are a form of decoding (reverse inference) rather
than encoding. It is tacitly assumed that each stage improves
performance of the decoder by uncovering better distributed
patterns of neural ensembles related to the mental state of
interest, and as a result, detailed spatial patterns confer pre-
dictive value, as explicitly posited to be one possible expla-
nation for decoding performance, “the pattern of activation,
rather than the overall level of activation of a region, is the
critical agent of discrimination.” (Wager et al., 2013, p. p. 1395)
This concept is now expounded for diverse topics across many
labs (Eisenbarth, Chang, & Wager, 2016; Gianaros et al., 2020;
Kragel et al., 2018; Lindquist et al., 2017; Marquand et al., 2010;
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Poldrack, Halchenko, & Hanson, 2009; Wager et al., 2013, 2015;
Woo, Roy, Buhle, & Wager, 2015).

The notion that across-subject decoders can capture
mental states across different individuals violates basic
neuroscientific principles, since it is premised on the immu-
tability and uniformity of human brains. Within-subject
decoding requires a one-to-one mapping between brain ac-
tivity patterns and brain states that needs to be preserved
across time. Preservation of mapping across time is vulner-
able to time effects such as learning, repetition suppression,
etc. For across-subject decoding, this mapping additionally
needs to be conserved across individuals. This ignores inter-
subject variability in structural and functional anatomy due
to differences in genetics, lifestyles, experiences, and associ-
ated memory traces (Gazzaniga, 2000; Kandel, 2013), each of
which would carve the individualized brain activity of sub-
jective brain states (for a discussion on the topic from the
viewpoint of fMRI analysis, see (Feilong, Nastase, Guntupalli,
& Haxby, 2018)). If a trivial, fixed relationship exists between
subjective brain states and brain activity, such decoders also
raise strong ethical and legal concerns regarding their ability
to invade mental privacy (Mecacci & Haselager, 2019) and
would be incongruent with commonly accepted philosophical
constructs of subjective brain states (Chalmers, 1997).

Our principal aim was to evaluate the performance and
necessity of fixed-weight decoders relative to more parsimo-
nious approaches (e.g., using encoders or brain activity maps
as decoders). After rigorously evaluating the performance of
decoders, we sought to understand fixed-weight decoders
from a more general perspective: What determines and con-
strains decodability?

2. Materials and methods
2.1. Datasets

6 datasets were used in this paper; all are part of published
studies and were either provided by their authors (Datasets 1,
2, 3, 4, and 5) or downloaded from public repositories (Dataset
6). Datasets 1, 2, 3, 4, and 5 consist of voxel-wise, whole brain,
task dependent GLM analysis activation maps (beta maps).
Dataset 6 consists of BOLD timeseries which were processed
using standard fMRI pre- and post-processing methods
described below.

2.1.1. Dataset 1

15, right-handed, adult subjects (mean age: 35.21 + 11.48
years, 7 females). Subjects had no history of pain, psychiatric,
or neurological disorders. FMRI data were collected while
subjects received thermal stimuli across 3 temperatures: 47,
49, and 51 °C. Subjects continuously rated, using a finger span
device (Apkarian, Krauss, Fredrickson, & Szeverenyi, 2001;
Baliki et al., 2006), their pain from 0, not painful, up to 100,
worst imaginable pain (“pain rating” task.) A control scan was
performed while subjects used the finger span device to track
a moving bar projected on the screen (“visual rating” task;
moving bar replicated for each subject the specific pain rating
task temporal pattern). The dataset includes one GLM beta

map per subject per stimulus type. The dataset was previously
described in (Baliki, Geha, & Apkarian, 2009).

2.1.2. Dataset 2

51 healthy, right-handed, adult subjects (mean age: 24 + 2.29
years, 34 females). Subjects had no history of brain injuries,
pain disorders, or psychiatric or neurological diseases. FMRI
data was collected while subjects received painful heat stimuli
on the right foot dorsum using a CO2 laser, as well as tactile
stimuli to the same area using electrical stimulation. Stimuli
were not delivered at the same time. Perceived intensities
were recorded for every stimulus and only the stimuli with
matched perceived intensity for painful heat and touch were
selected for GLM analysis. The dataset includes one activation
map per subject per stimulus modality — painful heat and
touch. The dataset was previously described in (Liang et al,,
2019; Su et al., 2019).

2.1.3. Dataset 3

14 healthy, right-handed, adult subjects (age: 20—36 years old,
6 females). FMRI data were collected while subjects received
painful heat stimuli on the right foot dorsum using a CO2
laser, tactile stimuli to the same area using electrical stimu-
lation, visual stimuli using a white disk presented above the
right foot, and auditory stimuli delivered via pneumatic
earphones. Stimuli were not delivered at the same time.
Perceived intensities were recorded for every stimulus and
only the stimuli with matched perceived intensity across the
four modalities were selected for GLM analysis. The dataset
includes one activation map per subject per stimulus modality
— painful heat, tactile, auditory, and visual. The dataset was
previously described and published in (Liang et al., 2019).

2.1.4. Dataset 4

33 healthy, right-handed, adult subjects (mean age: 27.9 + 9.0
years, 22 females). Subjects had no history of pain, psychiat-
ric, or neurological disorders. FMRI data was collected while
subjects received thermal stimuli that varied in one-degree
Celsius increments across six temperatures from 44.3 °C up
to 49.3. Subjects then evaluated each stimulus as warm, and
scored it from O, not perceived up to 99, about to become
painful, or as painfully hot, and scored it from 100, no pain, up
to 200, worst imaginable pain. The datasetincludes an average
GLM activation map per subject per stimulus temperature, as
well as the corresponding average stimulus ratings. When this
dataset was applied dichotomously (pain vs no pain), we
averaged the brain activity maps from the painful and non-
painful conditions; we omitted subjects who had fewer than
two brain activity maps for each condition, resulting in 29
subjects for dichotomous ratings. The dataset was previously
described in (Wager et al., 2013; Woo et al., 2015).

2.1.5. Dataset 5

14 healthy, right-handed, adult subjects (mean age 22.4 years,
range 19-35, 10 females). Subjects had no history of neuro-
psychiatric disorders, and were not on psychoactive medica-
tions. FMRI data was collected while at each trial subjects
were presented with a word and had to decide if it refers to a
living or nonliving entity. Each word was presented either
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mirrored or plain. The direction of presented words were
interspersed such that we end up with four trial scenarios:
Plain-Repeat (PL-RP) where during the trial and the one
immediately precedingit, the words were plain; Mirror-Repeat
(MR-RP) where during the trial and the one immediately pre-
ceding it, the words were mirrored; Plain-Switch (PL-SW)
where during the trial the word is plain, and the trial imme-
diately preceding it, the word is mirrored; Plain-Switch (MR-
SW) where during the trial the word is mirrored, and the trial
immediately preceding it, the word is plain. Data was
collected across twelve runs, two training weeks separated
two sets of six runs. Dataset includes, up to 12 GLM activation
maps (minimum 10) per subject per scenario. The dataset was
previously described in (Jimura, Cazalis, Stover, & Poldrack,
2014a). This dataset was provided in subject space. We per-
formed a nonlinear registration of the brains into standard
MNI space, 2x2x2 mm?, using FSL FNIRT (Andersson,
Jenkinson, & Smith, 2007).

2.1.6. Dataset 6

213 healthy, adult subjects (mean age 24.1 year (SD = 7.4
year), 101 females). Subjects had no history of physical or
mental health condition. fMRI data was collected while
subjects performed a voice localizer task. Forty blocks of
vocal sounds (20) and non-vocal sounds (20) interspersed
with periods of silence were presented while the subjects
laid silent and passively listening with their eyes closed in
the scanner. This dataset was previously described in (Pernet
etal., 2015). Raw fMRI data was downloaded from openneuro.
org (https://openneuro.org/datasets/ds000158/versions/1.0.
0). We used minimal pre-processing for this study which
was performed using the FMRIB 5.0.8 software library (FSL)
(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012),
MATLAB2018a and in-house scripts. The following steps
were performed: motion correction, intensity normalization,
nuisance regression of 6 motion vectors, signal-averaged
overall voxels of the eroded white matter and ventricle re-
gion, and global signal of the whole brain, and band-pass
filtering (.008—.1 Hz) by applying a 4th-order Butterworth
filter. All pre-processed rs-fMRI data were registered to the
MNI152 2 mm template using a two-step procedure, in which
the mean of preprocessed fMRI data was registered with a 7-
degrees-of-freedom affine transformation to its corre-
sponding T1 brain (FLIRT); transformation parameters were
computed by nonlinearly registering individual T1 brains to
the MNI152 template (FNIRT). Combining the two trans-
formations by multiplying the matrices yielded trans-
formation parameters normalizing the pre-processed fMRI
data to the standard space. Task related activation maps
(vocal us silence, and non-vocal us silence) were derived from
a whole brain GLM regression analysis using the FMRIB
Software Library (FSL) (Jenkinson et al., 2012; Smith et al,,
2004; Woolrich et al., 2009).

2.2. Decoders

2.2.1. Neurologic Pain Signature (NPS)
Neurologic Pain Signature, NPS, was shared with us by Tor
Wager, whose team developed this across-subject fwMVP

(Wager et al.,, 2013), and has studied its decoding abilities in
multiple publications.

2.2.2. Pain-preferring voxels (pPV)
Pain-preferring voxels, pPV, is an as-fwMVP decoder devel-
oped by Iannetti and colleagues (Liang et al., 2019).

2.2.3.  “Pain” neurosynth map (pNsy)

We used the term-based meta-analysis platform Neurosynth
(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) to
identify a reverse inference brain activity pattern for the term
“pain”, using association test. We term the obtained pattern as
pain-Neurosynth, or pNsy, decoder. Neurosynth uses a prob-
abilistic framework based on Generalized Correspondence
Latent Dirichlet Allocation and extracts latent topics from a
database of 14,371 published fMRI studies (neurosynth.org
(Yarkoni et al., 2011)). The term “pain” identified 516 studies
based on which a brain pattern was generated. The reverse
inference association map (FDR corrected <.01) was used as
pNsy, which identifies voxels and their probabilities for being
included in the 516 “pain” term associated studies but not in
the rest of the >11,000 studies.

2.2.4. Gaussian process decoder

We used a probabilistic Gaussian Process-based (GP) modeling
algorithm (Rasmussen, 2003; Schrouff et al., 2013a, b) to derive
an across-subject fwMVP decoder from the contrast between
thermal pain ratings and ratings of visual bars in Dataset 1.
We used the publicly available Matlab toolbox PRoNTo
(ver2.1.1) (Schrouff et al., 2013a, b). We label derived fwMVP
decoder pain-GP, or pGP.

2.3. Use of decoders

2.3.1. Normalized dot product

Throughout this study, we use the normalized dot product
(NDP) (eq. (1)) as a measure of similarity between templates
and brain activation patterns. The NDP is calculated between
the vectorized forms of a given decoder template and a
stimulus specific brain activation map. The NDP is a scalar
between —1 for colinear vectors of opposite direction, and 1 for
colinear vectors of same direction. An NDP value of zero
means the 2 vectors are orthogonal to each other — no
similarity.

Z?:lTi *Bi (1)
Z?:lTiZ : Z?:lﬁiz

where T and B are the vectorized forms of the decoding tem-
plate and a stimulus specific activation map, T; and p; are the
components of T and B, and n is the number of voxels
comprising the brain.

NDP=T-§ =

2.3.2. Binary classification

Two types of binary classifications were performed. The first
is a between groups binary classification of brains in painful
versus non-painful conditions (or some other decode-
comparator pair). We start by calculating the NDP for each
brain under each condition; We then use the NDPs as scores to
build the Receiver Operator Curve and calculate the area
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under the curve (AUC). The second classification is a Forced
Choice classification, this is a threshold free classification,
where the NDP of two brains are compared to each other, and
the one with the highest value is classified as “in pain”, or as
experiencing a higher level of pain than the second brain.

2.3.3. Meta-analysis

Meta-analysis was performed to obtain average performance
estimates for each of the three primary decoders. We modeled
each decoder separately since they are ‘competing’; as such,
the effect of covariance on model parameter estimates is un-
desirable. Because Dataset 3 contained three comparator tasks,
we averaged their performance and estimated the variance of
this estimate using the bootstrap technique (1000 replicates);
thus, the variance estimate of the average accounts for
covariance between the three comparator conditions. No vari-
ance stabilizing transformation was performed since the
bootstrap distribution of each AUC was approximately normal
and transformations provided little gain on average. Both NPS
and pNsy were modeled using Datasets 1—4, and pPV was
modeled using Datasets 1, 2, and 4, as pPV was derived from
Dataset 3. In other words, to use Dataset 3 in the pPV meta-
analysis would bias the results in favor of pPV, and we wan-
ted each estimate to be unbiased. We performed a random-
effects meta-analysis, fit using restricted maximum likelihood
in the metafor package using the raw AUCs (Viechtbauer, 2010).

2.3.4. Bayesian classification for identification

We created a nonparametric Bayesian classification model to
probabilistically classify subjects as being in a certain state
given their brain activity map. This model was trained and
run on all subjects across all pain Datasets (Fix & Hodges,
1951; Silverman, 1986), in addition to the voice dataset
(Pernet et al., 2015).

Starting with the pain datasets, we started with a matrix
containing all subjects, tasks, and their respective normalized
dot products (NDP). Each subject was sampled one at a time.
Using the remaining subjects, a probability density functions
(pdf) of normalized dot products was created for each task. To
create these pdfs, we used kernel density estimation with a
Gaussian kernel and a bandwidth chosen using the Sheather-
Jones method (Sheather & Jones, 1991). Specifically, a pdf was
created for each of the comparator conditions (visuomotor,
touch, audition, vision, and nonpainful heat) and pain. All of
the pain conditions were modeled as one distribution, as a tacit
assumption of these decoders is that “physical pain” is a single
construct. From these distributions, we could calculate a pos-
terior probability, P (pain | NDP), for each individual i (eq (2)):

f pan(NDP;[pain)P(pain)
Z}ilf)- (NDP; |task;)P(task)

P(pain|NDP;) = 2

where fpam (NDP;) andfj(NDPi) are the kernel density estimates
used for NDP; (i.e., derived from all other brains) in pain or task
j (where tasks j = 1, ..., k include all comparator tasks and
pain). Priors, P( +), were derived from the number of studies in
Neurosynth that contains:

e “pain” =516

e “tactile” OR “touch” = 110 + 225

e “visually” OR “vision” = 333 + 137
e “auditory” = 1253

e “visuomotor” = 153

e “heat” (from old Neurosynth) = 61

All study counts were obtained on December 10, 2019.
Because they were obtained from Neurosynth and each study
is given equal weight, the priors assume an equal number of
subjects across studies, and thus estimates the probability of a
brain undergoing each of these tasks in the “neuroimaging
world,” if we consider these tasks to be the neuroimaging
world. Of note, these priors provided more optimistic esti-
mates as compared to uniform priors.

For both NPS and pNsy, all subjects were used to obtain the
posterior distribution. However, to obtain an unbiased poste-
rior distribution for pPV, we did not include subjects from
Dataset 3 (i.e., from which pPV was derived).

This process was repeated for the voice test dataset (106
subjects). However, because the tasks in the voice dataset
were unique, we used a flat prior (i.e., prior probability = ! for
each of the two tasks).

2.3.5.  Calculation of distributional overlap for identification

We calculated the overlap between the distributions of deco-
dee and comparator NDPs as a marker of identifiability. The
overlapping region of probability density functions contains
information that cannot be used to identify; thus, lower
overlap corresponds to higher identifiability. To calculate
overlap, we first fit each NDP distribution (e.g., NPS pain and
NPS nonpain, separately) using kernel density estimation with
an Gaussian kernel and a bandwidth chosen using the
Sheather-Jones method (Sheather & Jones, 1991). We then had

)?decodee( +) and fcompmmr( +), kernel density estimates for the

decodee and comparator, respectively. We integrated over
their minimum to calculate their overlap:

[ 00 (F 09, e () o)

2.3.6. Normalized dot product — stimulus relationship

In this analysis we wanted to investigate the relationship
between the NDP and stimulus rating as well as stimulus in-
tensity. Dataset 4 includes information about stimulus in-
tensity and stimulus rating. We fit the data using locally
estimated scatterplot smoothing (LOESS) (Cleveland & Devlin,
1988).

2.3.7. Within study versus across study decoders

Given that pNsy is based on a meta-analysis of study-level
GLM brain activity maps, we created decoders from four
datasets by averaging subject-level GLM brain activity maps
obtained from a pain task. These study-level decoders were
then used to classify brains as pain versus no pain, in accor-
dance with the task.
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for each study i
average beta maps for the pain task in study i
end
for each study i
for each study j
for each subject k in study j
for each task 1 in subject k
calculate cosine similarity of between TASK_lk and
DECODER_i
end
end
calculate AUC for DECODER _i applied to STUDY_j
end
end

2.3.8. Within subject versus across subject decoders

Given the variability of fMRI data, both within-subject and
across-subject, we wanted to answer the following question:
will decoding mental states of a particular subject using a
template derived from data of the same subject be more ac-
curate than decoding of mental states of a group of subjects
using a template derived from the group's data? Are within-
subject decoders superior to between-subject decoders? The
following analysis addresses this question using Dataset 6.

2.3.9. Within subject decoding
Below is a pseudo-code for the within subject analysis.

for each subject i
for each task j
randomly select half the task j beta maps replicates,
average voxel-wise to get inter subject i, task j specific
decoding template Tj,
label the remaining task j replicates as TASK_j,
calculate Signature Responses (SR) of each beta map in
TASK_j using Tj,
for each task k # j
randomly select half the task k beta maps replicates and
label as TASK_k,
calculate SRs of each beta map in TASK_k using Tj,
calculate AUC for correctly classifying TASK_j and
TASK_k beta maps,
end
end
end
Average the AUCs along all subjects,
repeat from the start 1,000 times.

This will result in average AUC estimates for the classifi-
cation of each possible task pairs (i,j) using both T; and Tj. All
performed within-subject.

2.3.10. Between subject decoding
Below is a pseudo-code for the between subject analysis.
for each subject i
for each task j
average beta map replicates to get one beta map per subject
per task to form the between-subjects dataset,
end

end
for each task j
randomly select half the task j beta maps (from the between-
subjects dataset),
average voxel-wise to get between-subjects task j specific
decoding template Tj,
label the remaining task j replicates as TASK_j,
calculate SRs of each beta map in TASK_j using Tj,
for each task k # j
randomly select half the task k beta maps replicates and
label as TASK_k,
calculate SRs of each beta map in TASK_k using Tj,
calculate AUC for correctly classifying TASK_j and TASK_k
beta maps,
end
end
repeat from the start 1,000 times.

This will result in AUC estimates for the classification of
each possible task pairs (i,j) using both T; and Tj. All performed
between-subject.

2.4. Decoder perturbations

2.4.1. Pattern smoothing

To evaluate the importance of the spatial pattern of fwMVPs on
the performance of task classification, NDPs were calculated
using spatially smoothed versions of a given decoder. Our hy-
pothesis is that, if a pattern holds task specific information,
then spatial smoothing will diminish the performance of the
classifier. Smoothing was done using a 3D isotropic Gaussian
kernel filter applied to each template in standard space (eq. (4)).

(T*G(0))(x.y.2)

(M*G(o))(x.y.z) X2 @

Tf(X7 y,zlo)=
where T and Ty are the original and filtered decoder respec-
tively, G is the Gaussian kernel, M is a binary mask that is True
where the decoder is non-zero and False everywhere else, x, y,
z are voxel coordinates, and ¢ is the kernel standard deviation.
The additional M in the numerator resets all non-decoder
voxels to zero after filtering — preventing the decoder from
bleeding out of its boundary. The convolution in the denom-
inator is the sum of the kernel coefficients where it overlaps
with the decoder; this normalization leads to a weighted
average using only voxels within the decoder. Together, the
additional M in the numerator and the convolution in the
denominator correct for boundary effects during filtering. In
addition to the original decoder, patterns were progressively
smoothed by varying the kernel standard deviation from
1 mm up to 20 mm. Gaussian smoothing is in effect a spatial
low pass filter with a spatial frequency cutoff at -3dB given by:

fi(o)= VN2 )

2o

Increasing the Gaussian kernel standard deviation will lead
to a lower cutoff frequency, effectively reducing the spatial
resolution of the data.

A binarized version of each decoder was also used to
simulate a filter with infinite standard deviation, as well as the
sign of each filtered decoder at each filter level (sgn (Ty)), where
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voxels that are positive become 1, and voxels that are negative
become —1, and zero everywhere else. The signed version of
the templates was motivated by the fact that in contrast with
PPV and pNsy, almost half of the NPS voxels are negative
(22,725/47,490), and we needed to investigate the role of sign of
the coefficients excluding the effect of the absolute value on
decoding. The NDPs generated from these spatial filters were
used to calculate the AUC at each smoothing level.

2.4.2. Information redundancy

We investigated the extent of information redundancy for the
three pain the decoders. We wanted to examine whether the
spatial extent of a given decoder was needed, and what
percent, on average, of the total number of voxels in each
decoder was necessary before the classifier performance be-
comes comparable to the full decoder. Our hypothesis is that if
there is no information redundancy, the performance will
reach its maximum only when we include the entire decoder;
and with increasing redundancy this maximum will be
reached with a lower percentage of voxels on average.

Based on the raw, the unfiltered sign, and the infinitely
filtered version of each as-fwMVP, we constructed a series of
new decoders that included an increasing number of voxels
randomly selected from the parent fwMVP without replace-
ment, all remaining voxels were set to zero. We started with
ten voxels and increased to the maximum number of voxels in
a template. This random sampling was repeated 1,000 time,
which produces as many NDPs for each density level. The
NDPs were then used to calculate the ROC and its area, which
were then averaged to give the average AUC at each percent-
age level and also calculate associated uncertainty.

2.4.3. Voxel weights

We investigated whether or not voxels with higher co-
efficients (in absolute value) encode more state specific in-
formation compared to voxels with lower coefficients. To
address this question, we binned each fwMVP voxels by their
absolute weights, such that the top 10% of absolute voxel
weights were in the first bin, the second 10% were in the
second bin, etc., and built a decoder from each tier. We then
used those templates to calculate the NDPs and the AUCs as a
function of voxel coefficient tier. In addition to the 10% bin
width and unfiltered decoders, we also generated decoders
using bin widths of 1%, 5%, and 20%, as well as decoders from
the sign of the unfiltered, and infinitely filtered versions.

2.4.4. Role of brain areas

We investigated whether decoder voxels from certain brain
regions perform better than others. We selected pNsy as the
decoder for this analysis given the probabilistic meaning of its
voxel weights. We thresholded the decoder (voxel weights
z > 6) and generated a new decoder from each distinct cluster;
we ended up with seven new decoders. We then evaluated the
pain decoding performance of each new decoder on datasets 1
to 4. We applied a Gaussian spatial filter (SD = 10 mm) before
thresholding, otherwise we end up with too many fragmented
clusters. We also built 7 decoders from NPS and pPV using the
overlap between each of them and each of the 7 cluster from
pNsy. We used pNsy clusters because it is the decoder with the
most voxels in common with NPS and pPV.

2.5. Decoders derived from Dataset 5 and Dataset 6

We created fwMVP decoders from Dataset 5 (Jimura et al,
2014a) and Dataset 6 (Pernet et al., 2015) to assess the gener-
alizability of our results to other cognitive domains. In Dataset
5 we are interested in decoding “reading a mirrored text (mr)
after reading a mirrored text (mr—mr)” versus “reading a
mirrored text after reading a plain text (mr-pl)” or pl-mr or
pl-pl. In Dataset 6, we are interested in decoding “hearing
vocal sounds” versus “hearing non-vocal sounds”. Four ap-
proaches were used to create these decoders: Support Vector
Machine, LASSO-PCR, Gaussian Process Classification, as well
a GLM contrast of activation maps. Training and testing of the
decoders were similar across all four approaches, with some
minor differences in the treatment of each dataset in how we
select the training and testing groups. Assuming we have our
training and testing groups, the procedure is as follows:

1. Perform a second-level group analysis with cluster-based
thresholding corrected for multiple comparisons by using
the null distribution of the maximum cluster mass (FSL
randomize (Woolrich, Behrens, Beckmann, Jenkinson, &
Smith, 2004), option —C) on the training group for the
contrast GLM activation maps mr_rpt> (mr_sw, pl_rp, pL_sw)
for Dataset 6, and vocal_sound > non-vocal for Dataset 7.

2. Binarize the group contrast map; this will be the mask of
voxels of interest for building our decoders.

3. Use SVM, LASSO-PCR, Gaussian Process to generate the
decoder with the activation maps (GLM) of the training
group. For GLM decoders, the mean difference in activation
maps within this same masked region was used.

4. Perform the normalized dot product of the decoder with
the activation maps in the testing group to calculate the
signature response and calculate the AUC of the classifi-
cation exercise.

Dataset 5 include several replicate activation maps per task
for each of the 14 subjects, we preprocessed the data as
follows:

1. Average all task replicates for each subject.

2. Randomly split the subjects into two seven subject groups:
training and testing.

3. Create a template and test it as described above.

4. Repeat 100 times from step 2 and build the AUC
distribution.

After preprocessing, Dataset 6 included 213 subjects and
had one activation map per stimulus per subject. The large
number of subjects allows us to split it into a training group
(107 Subjects), and a validation group (106 Subjects)
without the need for permutation. Because the sample was
large, we calculated the AUC confidence interval using its
relationship with the Wilcoxon statistic and normal as-
sumptions (eq. (6))

where n is the number of individuals in the validation
sample, each of whom have one activation map for each
state.
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95% CI=AUC+1.96 \/A;C

((1 — AUC) + (n — 1)<

2.5.1. SVM and Gaussian process

We used the Matlab toolbox PRoNTo (ver2.1.1) (Schrouff et al.,
2013a, b) to derive the decoders using SVM (Cristianini &
Shawe-Taylor, 2000; Mourao-Miranda, Friston, & Brammer,
2007), and Gaussian Process (Rasmussen, 2003; Schrouff
et al,, 2013a, b). Data was split into two groups; Group 1
included activation maps of the mr_rp task for Dataset 5, and
of the vocal_sound stimulus for Dataset 6; Group 2 included
the activation maps of the mr_sw, pl_rp, and pl_sw for Dataset
5, and non-vocal_sound for Dataset 6. All maps were input as
independent datapoints. We performed a binary classification
analysis and used “Binary Support Vector Machine” for SVM,
and “Binary Gaussian Process Classifier” for Gaussian process,
and constrained the analysis to voxels within the mask
created from the second-level group analysis.

2.5.2. LASSO-PCR

LASSO-PCR was used to generate decoders following the
methods described by Wager et al. (Wager, Atlas, Leotti, &
Rilling, 2011; Wager et al., 2013) and was implemented in R. An
n x p sparse matrix of subjects (n) and voxels (p) was column-
wise centered and scaled. Of note, sparse columns were left
sparse since their scaled estimates are undetermined. Principal
components analysis (PCA) was performed using singular value
decomposition on the column-scaled matrix to obtain a new
n x n predictor matrix, Xpca, and a p x n rotation matrix, R. The
reduced predictor matrix, Xpca, Was used in a logistic regression
with L, regularization (LASSO) (Friedman, Hastie, & Tibshirani,
2010; Simon, Friedman, Hastie, & Tibshirani, 2011; Tibshirani,
Johnstone, Hastie, & Efron, 2004). Hyperparameter A was cho-
sen to minimize binomial deviance using leave-one-out cross-
validation across 100 V's; default glmnet parameters were used
to determine the exact grid range. PCA was performed (and
tested) separately within each fold. An n x 1 vector of penalized
coefficients was pre-multiplied by rotation matrix R to obtain a
p x 1vector of voxel weights. This vector of voxel weights served
as the decoder.

2.5.3. GLM

GLM was used to generate contrast-based decoders. These
simply used the average difference between unsmoothed GLM
activity maps (e.g., mean (vocal) — mean (non-vocal)), masked
to the same thresholded region as the other decoders.

3. Results
3.1. Overview

Our investigation began with two published pain decoders
and one pain encoder that we used as a decoder. Both quali-
tatively and quantitatively, these decoders were markedly
different from one another (Fig. 1). Despite these differences,

1 n 2AUC 6)
2-AUC 1+AUC

on average, their ability to discriminate pain from non-pain
states, using datasets from four published studies (N = 113)
(Baliki et al., 2009; Liang et al., 2019; Wager et al., 2013; Woo
et al, 2015), was nearly identical (Fig. 2a). To understand
decoding performance's dependence on decoder spatial
properties, we performed several operations to perturb the
decoders and reassessed their performance after each modi-
fication using the area under the receiver operating charac-
teristic curve (AUC):

1) To assess if anatomical regions have differential decoding
information, we limited the extent of the decoders to one
region at a time. For any given study, multiple clusters
from multiple decoders performed similarly well and even
matched the performance of the full-brain decoder
(Fig. 2b—c, Fig S2).

2) To test the influence of the spatial resolutions on perfor-
mance, we blurred each pattern using a spatial Gaussian
filter (Fig. 3a, Fig S1). We filtered each decoder within its
nonzero voxels using standard deviations ranging from 1
to 20 mm. In addition, we created a binary map, wherein
nonzero voxels within each decoder were set to 1 and all
other voxels 0, and a sign decoder, where positive voxels
were set to +1, negative voxels —1, and everything else 0.
Remarkably, the performances of all three decoders were
unaffected by pattern blurring; even the extreme blurring
present in the sign templates, and, with some exceptions,
the total blurring of the weights in the binary templates did
not affect decoding performance (Fig. 3b, Fig S3).
To test the redundancy of information captured by the
nonzero weights within each decoder, we constructed de-
coders that included only a subset of voxels from the
original templates. We randomly sampled nonzero
weights, starting with 10 voxels and increasing to the full
decoder. Maximum performance of the decoder was real-
ized even using a random selection of just 10% of the de-
coder's voxels (Fig. 3c, Fig S4-6).

To assess the impact that voxel weights have on perfor-

mance, we built decoders using 10% of the original de-

coders' voxels, selected according to their absolute weight
percentile (Fig S7). The top 10 percentile, followed by
weights between the 80 and 90 percentiles, then between

70 and 80, etc. Performance degradation was present in

some but not all decoders and datasets (Fig. 3d, Fig S8-9).

w
-~

B

We generalized our findings by examining the decoders for
cognitive domains other than pain, where functional segre-
gation is better established; namely, a reading task and a
listening task (two publicly available datasets, n = 14 and
n = 213 subjects, respectively) (Jimura, Cazalis, Stover, &
Poldrack, 2014b; Pernet et al., 2015). We compared decoding
performance between encoders used for decoding (GLM) and
decoders, before and after constraining the decoders to binary
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Fig. 1 — Spatial properties for three decoders, which are supposed to distinguish pain from other mental states, are distinct
from each other. (A) Location and voxel-wise weight patterns of the three pain decoders (respectively abbreviated NPS, pPV,
and pNsy). (B) Weight distributions of all three decoders are distinct. NPS weight values are distributed around zero; pPV has
no negative weights; pNsy has only a few negative weights. (C) Pairwise correlations between weights of the three decoders.
Lines depict total least squares regression fits. All three correlations are weak (rnxps-ppv = -16; Ypnsy-nps = -30; Ypnsy-ppv = -18).
(D) Euler diagram depicts relative size of each of, and spatial overlap between, the three decoders.

or signed maps. Our results closely resembled those for
decoding pain (Fig. 5).

The brain imaging literature commonly accepts that if a
decoder can adequately discriminate between a decodee and a
comparator, then it may also be useful for identifying the
mental state associated with the decodee. We tested this
concept for both pain and listening tasks. Despite discrimi-
nation being possible and robust to perturbations, all decoders
performed poorly and relatively similarly when trying to
identify the decodee mental state (Fig 6).

The results of our perturbation analyses led us to explore
the limits of decoding. If perturbed and simplified decoders
can perform similarly to the original decoders, can we further
simplify decoders and explain decodability? To address the
former question, we built pain decoders using noxious stimuli
encoders (brain activity maps). These encoding models per-
formed similarly to decoders. Unsurprisingly, within-study
performance was slightly superior to across-study perfor-
mance (Fig. 7a—b). We extended these findings to quantify

within- and across-subject decoding using four different tasks
(mr-mr, mr-pl, pl-pl, pl-mr), repeated up to 12 times per sub-
ject in 14 subjects (Jimura et al., 2014b). This study design
provides the opportunity to calculate discriminability as a
function of similarity measures from the decoder, decodee,
and comparator, for both within- and across-subject decod-
ing. Although performance was not consistently better for
within-subject discrimination, variation in performance could
be largely explained by within-task homogeneity and
between-task heterogeneity, allowing us to propose decoding
rules (Fig. 7c—d), which worked better for explaining within-
compared to between-subject discriminability. These results
present convergent evidence that 1) specifically for across-
subject discrimination, decoding is limited by the informa-
tion contained within encoding models (brain activity maps).
In particular, sparse, binarized brain activity maps contain
sufficient information to discriminate between mental states;
2) identifying a mental state (i.e., no direct comparison) is
harder than discriminating between mental states (i.e., a
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Fig. 2 — Decoder discrimination performance and regional specificity. (A) Meta-analysis of across-subject discrimination
performance (AUGC, chance = .5) for decoding pain from non-pain mental states for each of the three decoders. We only
included datasets that were independent of decoder derivation; since pPV was trained on Dataset 3, we did not include
Dataset 3 in pPV's meta-analysis. On average, all decoders perform similarly, but there is appreciable variance in each of the
estimates. Square sizes indicate meta-analytic weight and lines indicate their 95% CIs. Diamonds are the meta-analytic
estimates, and each diamond's width spans the 95% CI of the meta-analytic estimate. Vertical, dotted lines pass through
each meta-analytic point estimate. (B) Regions within each decoder have variable performance. We thresholded pNsy at
z = 6 to obtain seven contiguous clusters—each of the seven clusters are depicted in red in C. We used these seven clusters
as masks for each decoder (see y-axis in B) and evaluated the decoding performance of each decoder within the respective
clusters using Dataset 2 (Liang et al., 2019). Full decoder performance is depicted by the translucent vertical lines in B.
Grey = NPS; blue = pPV; orange = pNsy. NPS, pPV, and pNsy are published models and were trained on datasets not
included in this analysis; all tests are out of sample and cross validation is not applicable.

direct comparison); 3) similarity measures almost fully ac-
count for the variance of within-subject discrimination per-
formance, which degrades in across-subject discrimination.

3.2. Exploring established decoders

We started by assessing the similarities and differences of
three pain decoders. Two of them are optimized multivariable
decoders: The Neurologic Pan Signature (Wager et al.,, 2013)
(NPS), constructed using LASSO-PCR, and the Pain-Preferring
Voxels (Liang et al., 2019) (pPV), constructed using SVM. The
third decoder is an encoder: the meta-analytic association
map from Neurosynth (Yarkoni et al., 2011) for the term “Pain”
(pNsy). pNsy is a mass-univariate map based on reported
statistically significant coordinates from 516 pain-related
studies contrasted with the remaining 13,855 studies in the
Neurosynth database. Spatially, the three decoders include
voxels from approximately the same brain regions (Fig. 14),
with some but not full overlap (Fig. 1D). They have substan-
tially different numbers of voxels and distinct voxel weight
distributions (Fig. 1B): pPV and pNsy have 2,665 and 21,318
voxels, respectively, all with positive weights, except for a few
negatives in pNsy, whereas NPS has 47,590 voxels with
weights distributed around zero. In addition, the correlations

between the weights of voxels common in any two decoders
are weak (r = .17-.30; Fig. 1C).

3.3. Discrimination performance for pain is similar
between diverse decoders

We used the three decoders to discriminate between painful
and non-painful control stimuli in data from four published
studies, collected from three labs, totaling 113 subjects.
Discrimination was similarity measur-
e—normalized dot product (NDP), also known as cosine sim-
ilarity—between an encoding of the stimulus (brain activity
map) and the decoder. Others have used NDP for decoding; e.g.,
the application of NPS to neonatal and adult brain responses to
noxious stimuli (Geuter et al., 2020). Much like a correlation
coefficient, NDP produces +1 for identical patterns, 0 for
orthogonal patterns, and —1 for opposite patterns; however,
NDP does not demean the patterns, in turn preserving negative
voxel weights and “deactivations”. The assumption was that a
pain decoder should be more similar to an encoding of pain
(decodee brain activity map) than an encoding of a control task
(comparator brain activity map). We used AUC as an indicator
of discriminability since it can be interpreted as the probability
of a randomly sampled decodee NDP being greater than a

based on a
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randomly sampled comparator NDP, implying a direct com-
parison. We meta-analyzed the performance of each decoder
across datasets (except for pPV and Dataset 3, which was used
for its development; Fig. 2a). Decoding performance showed
dataset-dependent AUCs. However, the meta-analytic esti-
mate for each decoder was similar (AUC = .73).

This average performance similarity is remarkable and
informative about the nature of what drives decodabiltiy; it
implies that different models may nonetheless yield similar
average performance, indicating that their detailed properties
do not constrain decodability. Notwithstanding similar
average performance, the decoders performed differently
across datasets, indicating that decoding performance also
has a specificity component which can likely be explained by
brain region-specific dependencies.

3.4. No single brain region is necessary for decoding

We investigated brain region-dependence within the pain
decoders. To do so, we first divided each decoder into seven
parts based on seven different brain regions (Fig. 2c; see
Methods for details). Next, we evaluated the decoding perfor-
mance within each region for discriminating painful from
non-painful stimuli for datasets 1—4. Multiple clusters from
multiple decoders performed similarly well and matched the
performance of the full decoder (Fig. 2B and Fig S2). Moreover,
some clusters in isolation showed superior point estimates to
the entire decoder, but this was not generalizable across
studies and decoders. For instance, the voxels from NPS in the
right insula had an AUC greater than that of the full decoder
when discriminating pain from touch in Dataset 3, but lower
when discriminating the same stimuli in Dataset 2. In some
instances, such as the inferior brainstem in NPS and pPV and
right thalamus in pPV, the clusters had no spatial overlap with
the decoders. For these cases, the performance yielded an
AUC of .5. The inferior brainstem consistently performed
worst across studies and decoders. This is partially explained
by the exclusion of the inferior brainstem from NPS and pPV.
However, in pNsy, we suspect this effect is due to the influ-
ence of physiological noise that contaminates brainstem ac-
tivity. These results suggest that no anatomical region has
greater pain decoding power than other regions.

3.5.  All three pain decoders are insensitive to spatial
perturbations

3.5.1. Spatial smoothing of voxel weights

To investigate whether discrimination performance relies on
the high resolution fixed-weight nature of the decoder's voxel
patterns, we measured performance when these patterns
were degraded by spatial smoothing of the decoder weights
using a Gaussian filter with increasing width, up to 20 mm and
‘infinite’ smoothing (Fig. 3A, Fig S1). Gaussian filtering
removes the high-frequency content from the decoder
pattern, effectively reducing the resolution; the wider the filter
kernel is, the lower the resulting resolution. Of note, this
spatial smoothing yields decoders with cutoff frequencies
below that of the activation maps. We also built a binarized
version of each decoder wherein all voxels within a decoder
were assigned a value of 1 and all voxels outside the decoder

are zero, effectively destroying all high-resolution informa-
tion within the decoder. The binarized decoder emulates an
infinitely filtered decoder. We also built a “sign” version of
each decoder, where positive voxels become +1, negative
voxels —1, and everything else 0. Remarkably, decoding per-
formance was minimally affected by these procedures, with
performance dropping to chance level only for the binary
version of NPS in Dataset 2 and a slight downward trend also
for NPS in Dataset 4 (Fig 3B, Fig. S3). This result clearly dem-
onstrates that the fine-grained pattern of weights in these
decoders added no value to performance (with a few excep-
tions, Fig S3).

3.5.2.  Number of voxels

To characterize the minimum number of voxels necessary to
discriminate the pain from non-pain states, we created sets of
new decoders by randomly selecting subsets of voxels from
each decoder. Our analysis spanned from 10 voxels up to the
full decoder. Surprisingly, we attained the original decoding
performance when only using a random 10% of the total
number of each decoder's constituent voxels (Fig. 3C). We
replicated this finding on all datasets and for all three de-
coders, using their original form (Fig S4), when using their
binarized versions (Fig. S5), and when using their sign ver-
sions (Fig S6).

3.5.3. Significance of voxel weights

We further explored the relationship between voxel weights
and performance. Particularly, we wanted to investigate if
voxels with higher weights (e.g., the top 10%) are more specific
to pain and will yield greater AUCs than those voxels with
lower weights (e.g., the bottom 10%). For each decoder, we
binned voxels by their absolute weights and then constructed
a set of decoders using the voxels in each bin (see Fig S7). We
generated decoders using 1%, 5%, 10%, and 20% bins. For
example, the 10% binned decoders are a series of decoders
where the first decoder includes the top 10% of the voxels
according to the absolute value of their weight, the second
decoder is made up of the second 10%, etc., and the last of the
series is a decoder that is made up of the bottom 10% of the
voxels. Two versions of each series were generated: one
version where we left the voxel weights intact and a second
where we binarized the decoders after binning. Again, we
observed only minimal degradations in performance with
decreasing voxel weights for all decoder—dataset combina-
tions (Fig. 3D). Degradations were primarily seen for pNsy in
Dataset 2 (painful heat vs touch), and NPS in Dataset 3 (pain us
auditory and pain vs visual) (Figs. S8—S9).

3.5.4. Pattern value in stimulus/perception intensity decoding
Fixed-weight, multi-voxel pattern decoders derived with
machine learning have been used to model stimulus and
perceptual intensities. For example, in addition to binary
classification of heat stimuli of different intensities, Wager
et al. (2013) (see also (Tu, Tan, Bai, Hung, & Zhang, 2016))
used NPS to capture stimulus intensity and perceptual rat-
ings from brain activity. To this end, we tested the ability of
the three pain decoders to capture stimulus and perception
properties. We used data from a study where nonpainful
and painful stimuli of different intensities, perceptual
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Fig. 3 — Discrimination performance is similar for all three pain decoders and is a function of voxel locations, not weighted
patterns. (A) Example of spatial smoothing and its effects on decoder weight distributions. Here, we applied spatial
smoothing to NPS with standard deviations of 0 (no smoothing), 2, 5, 10, and 20 mm. Note that smoothing was only applied
within the extent of the original decoder (non-zero voxels). The fine-grain pattern observed with no smoothing is quickly
destroyed (i.e., already visually by 5 mm smoothing), and at 20 mm of spatial smoothing, the pattern that is left hardly
resembles the original decoder. Kernel densities below each brain (grey) are the distributions of voxel weights (black

line = 0). With more spatial smoothing, the distributions become more homogeneous and converge toward their mean
positive weight. (B—C) Across-subject decoding of pain from touch using Dataset 2 (Liang et al., 2019). (B) Performance does
not change when decoder pattern weights were distorted with increasing-size spatial smoothing. Sign = sign of original
voxel weights, rendering decoder weights of 0, —1, and +1; filtering ¢ = 0—20 mm; « = infinite smoothing rendering a
binary map. (C) Decoder performance depends only on a very small number of voxels, indicating information redundancy.
The number of voxels constituting each decoder was systematically increased (from 10 voxels to the full decoder) and
performance assessed for random samples of each size. 10% of each full decoder's voxel count (black ticks) discriminates
pain from touch equivalently to the full decoders. Shades are standard deviations for spatial uncertainty, ignoring across-
subject uncertainty. (D) Decoders were constructed using 10% of the voxels from the full decoders, with voxels selected in
order of their absolute magnitude, where 0 is the highest magnitude voxels and 100 is the lowest (see Fig S7). The voxels
with the highest absolute weights do not necessarily discriminate better than voxels with lower magnitudes, except for
PNsy in this dataset. Bars and shades are the 95% confidence intervals [CI] of AUCs, except in C, where shades indicate
standard deviations associated with permutation variability. In D, colored bars indicate the AUC of the full decoders. NPS,
PPV, and pNsy are published models and were trained on datasets not included in this analysis; all tests are out of sample
and cross validation is not applicable.

responses, and their associated brain activity were available
(Wager et al., 2013). All three decoders (NPS, pPV, and pNsy),
whether raw or binarized, performed similarly for capturing
perceived pain ratings (Fig. 4A and B), for reflecting the in-
tensity of the thermal stimulus (Fig. 4C and D), and for
discriminating between pairs of painful stimuli (Fig. 4E and
F). We performed this analysis using both NDP and dot
product (DP) as outcome measures. The latter was used in
the original study and provides opportunity to compare the
present results to the original study. The results of the DP
better match the original study. The discordant perfor-
mance between NDP (nonmonotonic, Fig. 4A, C, and E) and
DP (almost monotonic, Fig. 4B, D, and F) suggests that pre-
viously reported results (Wager et al., 2013) are attributable
to an increase in the magnitude of brain activity in specific

regions, but in a way that becomes less similar to the
decoder as indicated by the nonmonotonic trend of NDPs.
Yet, both NDP and DP were insensitive to the removal of
voxel weights.

Our results show, at least for the stimuli and decoders we
have analyzed, that optimized decoders (NPS, pPV) offer no
advantage over the simpler, mass-univariate encoder that is
used as a decoder (pNsy) for binary classification and
stimulus-perception mapping. Additionally, the voxel weights
in these decoders seem to provide little decoding advantage.
This reinforces the notion that binarized decoders perform
sufficiently and that useful information is provided only by
the decodee activity in a small subset of the locations where a
decoder has non-zero weights.
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Fig. 4 — All three pain decoders perform stimulus-perception mapping similarly, both in their original formulations and
after replacing voxel weights by binary representation (0,1 values). When binary decoders are compared to the unfiltered (or
raw) decoders, all three pain decoders perform similarly in mapping pain and heat perception ratings (A—B), mapping
painful stimuli (C—D), and discriminating between pairs of painful stimuli (E-F). Analysis was done using both normalized
dot product (NDP) and dot product since NDP produced results discordant with an original publication (Wager et al., 2013)
that relied on dot products. Dot products that do not reliably increase with increasing pain or temperature imply that the
decoders cannot reliably predict subjective ratings or stimulus intensity. Vertical lines in A and B indicate the transition
from nonpainful heat (<100) to painful heat (>100). The dot products in B, D, and F were z-scored within each decoder for
presentation purposes. NPS, pPV, and pNsy are published models and were trained on datasets not included in this
analysis; all tests are out of sample and cross validation is not applicable.

3.6.  Cognitive and auditory decoders are similarly highly
redundant

So far, we have shown that popular pain decoders, as well as a
meta-contrast map (encoder) used as a decoder, are able to
maintain their full performance after being perturbed and
degraded, indicating that much of the information contained
within them is redundant. One worries that the findings may
be specific to the modality studied, as pain and nociception
are sensory systems for which no dedicated tissue has been
uncovered in the neocortex (Chen, 2018). As a result, there is
long-standing debate as to specific or distributed encoding of
pain perception (e.g., (Segerdahl, Mezue, Okell, Farrar, &
Tracey, 2015); cf. (lannetti & Mouraux, 2010; Petre et al,
2020)). To broaden our findings, we examined whether the
uncovered principles apply to decoding for audition and

reading. Primary and secondary auditory cortex (Brewer &
Barton, 2016; Fruhholz & Grandjean, 2013) are in close prox-
imity to the somatosensory regions examined above for pain
and cortical columns in the region reflect specific auditory
properties, while language representation with dedicated and
functionally specific tissue is unique to humans (Broca, 1861).
We used data from reading (Jimura et al., 2014b) and auditory
(Pernet et al.,, 2015) studies to construct encoders using
contrast maps, as well as decoders using multivariable SVM,
LASSO-PCR, and Gaussian processes (our contrast maps
closely resemble those reported in the original studies, Fig
S10—S11; see Methods). In the case of the reading cognitive
task, our findings are entirely concordant with those for the
pain decoders: all the constructed decoders show similar
performance, which was maintained after extreme perturba-
tions (e.g., sign or binary decoder) (Fig. 5). These findings
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Fig. 5 — Different implementations of cognitive and auditory decoders perform similarly regarding discrimination
performance and are robust to perturbations. We constructed decoders using general linear modeling (GLM), least absolute
shrinkage and selection operating with principal components regression (LASSO-PCR), support vector machines (SVM), and
Gaussian processes to decode (top) cognitive (reading mirror txt after mirror text vs mirror-plain, plain—plain, and plain-
mirror) (Jimura et al., 2014b) and (bottom) auditory tasks (listening to vocal vs non-vocal sounds) (Pernet et al., 2015). Much
like the pain decoders, these decoders performed similarly and better than chance (chance = .5 in both) and were relatively
insensitive to perturbations. Just 10% of each decoder was enough to capture its full performance, and even extreme
perturbations, such as 10% of the binary decoder or 10% of sign (decoder), had little effect on performance. Error bars are the
95% confidence intervals of the AUCs. For the cognitive task analysis, we estimated the distribution of AUC using 100
permutations of randomly splitting the subjects in half, used one half for training and the second for validation. In the
auditory task analysis, the large number of subjects (213) allowed us to split the sample into a training group (107 subjects)
and a testing group (106 subjects) without a need for permutations.

generalize and provide compelling support for our main
result: decoders are highly redundant, and decoding primarily
exploits information contained within voxel locations, inde-
pendent of voxel weights. Moreover, task-specific encoders
(contrast maps) are sufficient for decoding, implying that the
meta-contrast maps (e.g., from Neurosynth) are also not
necessary.

In the auditory task, discrimination performance is better
with LASSO-PCR, SVM, and Gaussian Process than with GLM.
We suspect these differences are a consequence of specific
instantiations of overfitting or due to the larger sample size
enabling the models to capture more encoding detail. We
observed similar decoder-dependent performance variations
for the pain decoders as well (see Fig. 2A); yet, in further an-
alyses, none showed superiority over the others. In the audi-
tory task, and for both SVM and Gaussian Process decoders,
we also observed appreciable performance decrement for bi-
nary maps and for 10% binary map decoders. This too was
observed in the pain decoders. Like with the pain decoders,
here, we also observed that binary map decoders and 10% of
sign (decoders) performed similarly to the raw decoders, again
suggesting that negative weights at large scales can influence
decoder performance.

3.7. Identification remains a challenge
The ability of machine learning-derived decoders to identify

mental states is repeatedly asserted in the literature
(Eisenbarth et al., 2016; Kragel et al., 2018; Lindquist et al.,

2017; Marquand et al., 2010; Poldrack et al.,, 2009; Wager
et al.,, 2013, 2015; Woo et al., 2015). If decoders are used with
the objective of identification, then they should be able to
pinpoint the specific mental state solely from the similarity
between the decoder and decodee, and, crucially, in the
absence of a comparator. This is akin to being able to state
whether a dog is a pug without other dogs being present. In
other words, identification should be based on a single
observation and what we (or the decoder) “know(s)” about the
world. This may involve a set of brain responses to any
possible stimulus—a very large set. Alternatively, discrimi-
nation only requires information about two brain states: the
decodee and the comparator. Therefore, instead of AUC,
which implies a comparison, we tested identifiability by
calculating distributional overlap between the states of in-
terest and no interest. Distributional overlap estimates the
proportion of points that have an equal probability of
belonging to the state of interest and state or states of no in-
terest; here, equiprobability implies unidentifiability. In other
words, the proportion of points that are unidentifiable. In
addition, we were interested in assessing performance at the
individual level. To do so, we calculated the probability of a
subject being in a specific mental state given that subject's
brain activity map. Distributional overlaps and state proba-
bilities assessed the ability of decoders to identify mental
states.

Identification of pain states was similarly poor across the
three pain decoders explored: overlaps between states of in-
terest and states of no interest were high (>68%) and the
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Fig. 6 — Identification of mental states shows poor predictability. Three pain decoders (NPS, pPV, and pNsy in A—C) and a
voice decoder (D) were used to test identification for mental states. x-axes are the normalized dot products between decoder
and decodee, while y-axes are the posterior probability of being in pain (A—C) or listening to voices (D). Distributions of
normalized dot products and posterior probabilities include both the decodee (light grey & colors) and comparator (dark
grey) tasks. (A—C) Normalized dot products of the pain condition span the entire distribution of comparator normalized dot
products, and as a result, pain is not adequately isolated from the comparator conditions. Quantitatively, this is evidenced
by the strong decodee-comparator overlap for (A) NPS (overlap (95%CI) = 68% (59—82)), (B) pPV (79% (73—90)), and (C) pNsy
(73% (66—84)). This is reflected in the Bayesian model, which shows similar probabilities of being in pain for both pain and
pain-free conditions (each dot/line). To this end, all three decoders perform similarly, and cannot unequivocally identify
pain, as indicated by their sensitivity/specificity (threshold from Youden's ] statistic, chosen in-sample) of (NPS, A) .64/.74,
(pPV, B) .6/.64, and (pNsy, C) .54/.76. (D) In contrast to pain, a contrast map decoder for identifying when a participant is
listening to human voices separates more clearly the normalized dot products of the decodee (red) from comparator (dark
grey), but still performs poorly (overlap = 54% (46—66)). This separation is reflected in the Bayesian model, which shows
high probabilities when individuals are listening to human voices and lower probabilities when they are not. Using a
threshold determined by Youden's ] statistic (chosen in-sample), the voice decoder has a sensitivity/specificity of .77/.64. In
(A), (B), (C) the dataset used were not used in the training of the decoders (NPS, pPV, pNsy); tests are all out of sample. In (D),

we split the dataset into a training set (107 subjects) and a testing set (106 subjects).

probabilities of being in pain (when actually in pain) were low
(median posterior probability <.5) (Fig. 6a—c). These results
paint a markedly different picture than the discrimination
results, which simply show that NDPs tend to be greater when
individuals are in pain. Evidently, good discrimination does
not imply good identification.

We built upon the pain findings by using the task-specific
contrast map to decode perception of vocal versus non-vocal
sounds (Pernet et al., 2015). Although the performance of the
voice decoder was better than that of the pain decoders
(overlap = 54%), it was still inadequate, as over half of the data
was unidentifiable (Fig. 6d). The slight superiority of the voice
decoder relative to the pain decoders may have several ex-
planations, including the homogeneity of the training and test
sets used for the voice data or simply that some tasks are
easier to identify than others. In any case, regardless of the
mental state tested, identification remained unreliable and
thus does not seem currently feasible with fixed-weight
decoders.

3.8. Brain activity maps are sufficient for discrimination

The similarity in performance achieved by meta-contrast
maps or task-specific contrast maps (encoders) and opti-
mized multivariable decoders prompted us to take another
step back in the decoding derivation process. Would an even
simpler construct—pain activity maps—be sufficient to decode
the state of being in pain? In other words, if no performance is
lost by using contrast maps, would task-derived activity maps
suffice as simpler but adequate decoders? We created brain
activity map decoders by averaging half of the brain activity

maps for each study's pain task, leaving the remaining maps
for testing. Each activity map decoder was then used to
discriminate pain using the left-out brain activity maps of
subjects both within and between studies (Fig. 7A). Remark-
ably, these decoders performed comparably to the ones pre-
sented hitherto (NPS, pPV, and pNsy), with an average within-
study AUC of .79 and between-study AUC of .69 (cf. ~.73 for the
fixed-weight decoders; Fig. 7B). Combined with our earlier
findings, these results raise a salient question: If decoding can
be approached in so many different ways, what actually de-
termines decodability?

3.9.  Modeling decodability

Although decoding is difficult, decoding performance itself is
likely predictable; yet, to our knowledge, remains unexplored.
To build upon our breed metaphor, some dogs exhibit features
that largely overlap with other dogs, such as the stature, color,
and flat-faced features of pugs and French Bulldogs. Similarly,
the mental state of “being in pain” shares many features with
other states; for example, unpleasantness, behavioral rele-
vance, and saliency (Mouraux & Iannetti, 2018). Therefore, the
primary challenge of decoding is to tease apart these over-
lapping features. For this reason, it seems logical that the
similarity of activity maps within and between the decoder,
decodee, and comparator would determine decoding perfor-
mance. If the decoder is built from activity maps that are
dissimilar, the resulting average map would have a low signal-
to-noise ratio; if the decodees or comparators are dissimilar,
then we can expect a greater variance in NDPs; and if the
decodees and comparators are similar to one another, then
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Fig. 7 — Decoders constructed from activity maps (encoders) perform similarly to pattern-based decoders and are dependent
on both decodee and comparator properties. (A) Performance of four activity map decoders, based on the across-subject
averaging for pain tasks, to differentiate pain from six other mental states. (B) Among the activity map decoders, within
study performance is slightly higher but extensively overlaps with across study performance. Meta-analytic estimates of
performance for NPS, pPV, and pNsy (color lines) are within .4 standard deviations from the average performance of both
within and across study activity map decoders. (C—D) Properties of activity map decoders are examined within and across
subjects as a function of a cognitive task (mr-mr, mr-pl, pl-pl, pl-mr) (Jimura et al., 2014b). (C) Decoders (rows) are built from
four cognitive tasks, tested on remaining three (columns), in a within subject and across subject design. Within subject
performance is always more consistent (i.e., it has smaller variance) but not necessarily greater than across subject. For
example, the within subject performance is always superior to across subject when using task 2 as the decoder. The inverse
is true when task 2 is the comparator, implying strong task dependence. (D) Decoder performance scales with the ratio of
decodee similarity to decodee-comparator similarity (based on normalized dot product), for within- and across-subject
comparisons. Because discriminability depends on this ratio of similarities, they can be viewed as rules for decoding. Each
color in (D) represents a decodee-comparator pair of tasks 1—4 in (C); each point is a permuted sample that has been
shrunken towards .5; the black line is the fit of a beta regression (Cribari-Neto & Zeileis, 2010) across decodee-comparator
pairs. In (A) the testing is a combination of within sample (also within study) for the case of: Dataset 1 — Dataset 1:
Visuomotor, Dataset 2 — Dataset 2: Touch, Dataset 3 — Dataset 3: Auditory, Dataset 3 — Dataset 3: Visual, Dataset 4 — Dataset
4: Heat, and out-of-sample for all other combinations. In (C) the results are calculated using 100 permutations of randomly
splitting the subjects in half, used one half for training and the second for validation.

they will have high overlap and be difficult to tease apart. This metrics that reflect these relationships, we attempted to
logic implicates the neuroanatomical and physiological as- explain decodability.

sumptions previously mentioned, as heterogeneity across Until now, we have primarily focused on decoding across-
individuals should decrease similarity, making the NDPs more rather than within-subjects. Intuitively, it is apparent that, for

variable and thus more difficult to discern. Using similarity many of the reasons elaborated above, decoding mental states
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should be more successful within-subjects compared to
across-subjects, as has been formulated by others (Cox &
Savoy, 2003; Haxby et al., 2011). However, no systematic
analysis of this notion has been performed using fixed-weight
decoders. Therefore, we investigated this question using data
well-suited for the question: fMRI data collected from 14
subjects who completed four cognitive tasks, each with 12
replicates (Jimura et al., 2014b). These repetitions enabled the
comparison of decoder performance within- and across-
subjects. As expected, decoding performance is more precise
(smaller variance) within-subject (Fig. 7C), but interestingly,
not necessarily better (greater average AUC). We investigated
whether the ratio of decodee to decodee-comparator similar-
ity (or within:between) can be a possible natural metric of why
some decoders are more efficacious than others. This ratio
was calculated as the average NDP of all 15 decodee pairs
divided by the average NDP of all 36 decodee-comparator
pairs. Higher performing decoders showed greater with-
in:between ratios than lower performing decoders (Fig. 7D).
Similarly, decoder similarity—the average NDP of all pairwise
combinations of a decoder's constituent activity maps, a
measure of reliability—could also explain much of the
decoder performance, and in support of our previous conclu-
sions, this relationship is largely unaffected by binarizing the
decoder (Fig S12). Further exploration showed that decod-
ability, especially within-subject, is strongly predicated on
these similarity metrics (Fig S13—S14; Table S1). Decodee
similarity, together with decodee-comparator similarity, is
strongly predictive of discriminability, accounting for 91% the
variance in AUCs. Our similarity metrics almost entirely
explain within-subject decodability, but only about 62% of
AUC variance in across-subject decoding. This result may
speak to the assumptions violated by across-subject decoders,
in that a similarity score across-subjects is less interpretable
than one calculated within a single subject since variance
(e.g., brain anatomy) may be converted to bias (making all
brains fit the same template) during image preprocessing and
registration.

4, Discussion

In this study, we asked what the determinants and limits of
decoding mental states are. For pain, reading, and language
tasks, only the locations of a small subset of GLM-derived
voxels from an encoder were sufficient for achieving a
discrimination of AUC =75%, and a long list of machine
learning tools could not consistently improve upon this per-
formance. We also showed that, in contrast to discriminating
between states, identification of a given perceptual state is
much harder. For the first time, we advanced the concept of
quantifying discriminability using a simple similarity metric,
the NDP, with which we provide models for within- and
across-subject discrimination. The latter analyses indicated
that discriminability depends not only on the decoder, but
also on similarity between the decodee and comparator.
Finally, we showed that, even in an example where within-
subject discrimination was almost fully modeled with simi-
larity properties, there was a considerable decrease in the
variance of across-subject discrimination that could be

explained. In doing so, we establish limits of decodability
based on fixed-weight models currently used in fMRI
literature.

Our similarity metrics explained a large proportion of the
variance in AUCs both within- (95%) and across- (68%) sub-
jects. The within:between similarity metric in particular—-
which is calculated as the average decodee similarity divided
by the average decodee-comparator similarity—is conceptu-
ally similar to reliability. If the decodee is not reliable, it will
have a low average decodee similarity; if the decodee and
comparator share a lot of variance, the decodee-comparator
similarity will be high. To successfully decode, the decodees
must be similar relative to the comparator. Reliability assesses
a similar construct: variance must be low within a subject (or
task) relative to between subjects (or tasks). Thus, the reli-
ability of fMRI itself must be considered when trying to un-
derstand decoders. fMRI's reliability has been scrutinized for
some time (Vul, Harris, Winkielman, & Pashler, 2009), and
recently, Elliott et al. (2020) carried out a meta-analysis
demonstrating fMRI's poor reliability (e.g., task-fMRI intra-
class correlation coefficient [ICC|] < .4). However, as astutely
noted by Kragel, Han, Kraynak, Gianaros, and Wager (2021),
how the ICC is calculated matters. For multivoxel-based
decoding (e.g., with multivariable models), multivariate ICCs
are of greater interest and exceed .75. From a data quality
viewpoint, our similarity metrics imply that designing exper-
iments that maximize task reliability should enhance deco-
dability—it is prudent that such measurement properties be
considered before collecting data.

Limitations of across-subject decoding and reverse infer-
ence have been acknowledged by others. For example, recent
evidence shows that brain-behavioral phenotype associations
seem to become reproducible only with sample sizes of N >
2,000 (Marek et al., 2020). Yet, the extent of these limitations
and specifically the spatially widespread redundancy of fixed-
weight decoders has not been previously quantified, nor has
decodability been modeled. Multiple approaches have been
adopted to overcome such limitations. The simplest is to
avoid these complications by constraining fMRI studies to
within-subject investigations, thus bypassing the idiosyn-
crasies of anatomically aligned group-averaged results. The
approach obviates across-subject decoding, yet it is used by
various groups, including subject-specific localizers in vision
(Nasr, Polimeni, & Tootell, 2016) and language studies
(Fedorenko & Blank, 2020). An alternative solution is to build
task-based brain atlases using a large number of tasks, pref-
erably in large numbers of subjects (e.g., (Nakai & Nishimoto,
2020; Pinho et al., 2020)), which may be used as priors in future
specific studies.

On the other hand, multiple approaches have been
implemented for decoding mental states from fMRI data (see
Supplemental Discussion). Overall, it seems our findings
generalize: decoding success is not predicated on voxel-wise
specificity. Instead, the information necessary for decoding
appears to be spatially coarse and distributed, rendering many
voxels contained within the decoders to be redundant. This is
not to say that specific voxels are not sufficient for decoding;
rather, widespread information sharing across the brain
simply enables statistical prediction to occur on a coarse
spatial scale. The importance of a fine-grained pattern in a
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decoder must therefore be explicitly demonstrated (see
Recommendations).

Our demonstration that decoders fit using machine
learning algorithms do not yield better decoding performance
compared to linear encoders is novel but perhaps unsurpris-
ing. The decoders themselves were constrained to “statisti-
cally significant” encoding voxels; univariately, these voxels
were redundant. Although decoders should take advantage of
multidimensional information that may not be present in the
encoders, tuning voxel weights using multivariable decoding
models only slightly improved performance for the voice data
(Fig. 5, bottom) and had no appreciable effect at all for all other
datasets. This overlaps with but differs slightly from what has
been observed in both neuroscience (Schulz et al., 2020) and
other domains, such as medicine (Christodoulou et al., 2019;
Desai, Wang, Vaduganathan, Evers, & Schneeweiss, 2020):
simple statistical models, such as logistic regression, on
average perform similarly to models fit using machine
learning algorithms and we have yet to maximize the per-
formance of parsimonious models. The reasons for this are
manifold, and from a modeling viewpoint, it has been argued
that the added value of linear “machine learning” techniques
is often small, exaggerated, and does not translate into prac-
tical advantages (Hand, 2006), in part due to small training
samples (Schulz et al., 2020). Our data take this idea a step
further by demonstrating that encoders—which are essen-
tially t-test parameters—contain sufficient information for
decoding. It may be the case that full-brain decoders that are
not constrained by contrast maps perform superiorly, but
preliminary evidence suggests performance gains may be
marginal (Zhou et al., 2020). Further, the large number of
predictors relative to the small sample sizes yield statistically
indeterminate models, meaning infinite models exist for a
given stimulus. Although unsurprising given the aforemen-
tioned work in this area, the apparent stark discrepancy be-
tween our findings and those in the literature warrants
explicit explanation.

How do we explain the discrepancy between our results
and the literature, even when the same decoder is used on the
same data (Wager et al., 2013)? We cannot escape the
conclusion that decoders are superfluous models. Indeed,
Wager and colleagues have also observed similar performance
across several pain decoders, including NPS, pNsy, and a
candidate NPS model that used SVM(Geuter et al., 2020; Wager
etal., 2013). Yet, across-subject decodability remains complex;
only brain location seems to add value, and decodability de-
pends on within and between similarity of decoder, decodee,
and comparator. These findings advance the general princi-
ples of decoding mental states.

5. Recommendations

Importantly, the results of our study provide valuable insight
for the field of decoding and several practical takeaways that
can improve the future efforts in creating fixed-pattern de-
coders. Specifically, we suggest that authors include and
consider the following:

1. Perturbations of the decoders to demonstrate that their
properties do, in fact, contribute to decoding performance.
The perturbations that should be applied may depend on
what authors would like to claim regarding their decoder. If
it is claimed that the fine-grained pattern is important,
spatial smoothing could specifically test the spatial fre-
quency or scale at which decoding can be completed.
Alternatively, if the decoder is said to be sparse and that its
constituent elements are necessary for decoding, then
random sampling of the weights would specifically test the
necessity of its weights.

2. Comparisons of the decoders to a negative control rather than
just “chance”. To claim that the algorithmic process used to
tune the weights of a given decoder improves performance,
one should test the performance of the decoder at each stage of
its creation. For example, pPV started with brain activity maps,
then used contrasts and conjunction analysis, and then
applied SVM; however, brain activity maps alone have similar
decoding performance as the final pPV model (Fig. 6). The gain
of more sophisticated modeling approaches over more parsi-
monious ones should be evidenced rather than assumed.

3. Discrimination and identification performance should notbe
conflated. Many decoding and prediction studies rely on
AUC—a measure of discrimination. However, in practical
situations, identification is arguably of greater interest. Here,
we used distributional overlap as an agnostic approach to
quantifyingidentification, but this is inadequate for practical
purposes. Rather, investigators should rely on decision the-
ory to pick cutoffs that have appropriate error rates—or ex-
pected costs and benefits—for their application or utility
function. Ideally, such cutoffs should not change from task-
to-task or sample-to-sample, as decoding performance in
new samples and environments is of the utmostimportance.
If probabilistically identifying, authors should demonstrate
that their model is properly calibrated.

4. Use realistic or ecologically valid tests to demonstrate

decoding performance. The metrics used to assess decoding
performance should reflect the problem one is trying to
solve with the decoder. For example, mixing within- and
across-subject performance can mislead readers if the ulti-
mate goal is one of the two. Furthermore, if one wishes to
apply decoders to real-world or clinical settings in which no
known stimuli is being applied, many stimulus-derived de-
coders may not generalize well. That is, although a decoder
may perform well with stimuli, it will not necessarily
generalize to clinical settings if that is the ultimate goal. Re-
searchers should test the decoder in the setting or on the
level about which they would like to make inferences.

5. Share their data and decoder. Open science practices
enable others to scrutinize, apply, and build upon the
original work. Indeed, the analyses we presented in this
paper would not have been possible without authors'
willingness to make their work available.

6. Establish boundary conditions. It is not only important to
know when decoders perform well, but also when they
perform poorly. This may involve introducing more control
stimuli, more difficult decoding tasks (e.g., identification
instead of discrimination), or applying to more general
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samples or populations (e.g., chronic instead of acute pain,
see for example (Lee et al., 2021)).

By implementing the above recommendations, we believe
researchers and readers can better understand the properties
and limitations of decoders, in turn making gaps in the litera-
ture more transparent and eluding optimistic biases. Thus,
these recommendations will enable authors to easily demon-
strate the novelty of their decoders. Similarly, it may be prudent
for neuroimaging researchers to develop and implement
reporting guidelines for decoding studies, much like Trans-
parent reporting of a multivariable prediction model for indi-
vidual prognosis or diagnosis (TRIPOD) in the clinical prediction
literature (Collins, Reitsma, Altman, & Moons, 2015).

6. Conclusion

Mental state decoding is a large, impactful subfield of cogni-
tive neuroscience. Many approaches to decoding have been
proposed and implemented. Here, we systematically assessed
just one such implementation of multivariable decoders,
which uses fixed voxel weights. Our findings reveal mis-
conceptions that are widespread in the brain imaging com-
munity and amplified by some oversold decoding studies. On
the other hand, our findings also agree with much of the
literature regarding the spatial resolution of decoding. In turn,
this work extends our understanding of mental state de-
coders, provides insight into decodability constraints, and
forms the basis for several practical takeaways that re-
searchers can readily implement in their own work. Impor-
tantly, the limited and inadequate performance of fixed-
weight across-subject decoders, especially regarding identifi-
cation, pose strict bounds on their utility in the domains of
medical and legal decision-making.
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