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Head motion is a major confounding factor impairing the quality of functional mag-
netic resonance imaging (fMRI) data. In particular, head motion can reduce analytical
efficiency, and its effects are still present even after preprocessing. To examine the
validity of motion removal and to evaluate the remaining effects of motion on the
quality of the preprocessed fMRI data, a new metric of group quality control (QC),
dissimilarity of functional connectivity, is introduced. Here, we investigate the associ-
ation between head motion, represented by mean framewise displacement, and dis-
similarity of functional connectivity by applying four preprocessing methods in two
independent resting-state fMRI datasets: one consisting of healthy participants
(N = 167) scanned in a 3T GE-Discovery 750 with longer TR (2.5 s), and the other of
chronic back pain patients (N = 143) in a 3T Siemens Magnetom Prisma scanner with
shorter TR (0.555 s). We found that dissimilarity of functional connectivity uncovers
the influence of participant's motion, and this relationship is independent of popula-
tion, scanner, and preprocessing method. The association between motion and dis-
similarity of functional connectivity, and how the removal of high-motion
participants affects this association, is a new strategy for group-level QC following

preprocessing.
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1 | INTRODUCTION

Head motion always exists during magnetic resonance imaging (MRI)
acquisitions, particularly when children, elderly, and patients (e.g., with
chronic pain or Parkinson's disease) are scanned (Alfaro-Almagro
et al., 2018; Igata et al., 2017; Malfliet et al., 2017; Satterthwaite
et al.,, 2012; Yuan et al., 2009). Moreover, head motion is considered
one of the major confounding factors impairing the quality of func-
tional MRI (fMRI) data and consequently reducing analytical efficiency
(Ciric et al., 2018). Thus, a wide variety of preprocessing methods
have been proposed to mitigate motion-related artifacts prior to anal-
ysis. These methods include (a) the conventional method (Baliki
et al., 2012), which covers motion correction (Jenkinson, Bannister,
Brady, & Smith, 2002), slice-time correction (Sladky et al., 2011), low-
frequency signal drift ( Smith et al., 1999), spatial smoothing (Smith &
Brady, 1997), band-pass temporal filtering, and regressions of physio-
logical signals within white matter (WM) and cerebrospinal fluid (CSF),
motion-related parameters, and global signal (Murphy, Birn, Hand-
werker, Jones, & Bandettini, 2009); (b) the scrubbing method, which
involves removing volumes that exceed some motion threshold
(Power et al., 2014); and two ICA-based methods; (c) Automatic
Removal of Motion Artifacts (ICA-AROMA) (Pruim et al., 2015); and
(d) FMRIB's ICA-based Xnoiseifier (FIX) (Salimi-Khorshidi et al., 2014).
At the participant level, the aforementioned methods could greatly
reduce motion-related artifacts based on a series of benchmarks
(Parkes, Fulcher, Yucel, & Fornito, 2018); however, it is conceivable
that none of the methods are able to remove all artifacts in the
presence of head motion to such a level that compares to the ideal
no-motion condition. Specifically, even minor motion between
volumes during image acquisition will contribute to major intensity
shifts in BOLD data (Parkes et al., 2018; Zaitsev, Akin, LeVan, &
Knowles, 2017), which will influence the correlations between signals
depending on the waveforms of the confounds. Thus, it is imperative
to develop group-based quality control (QC) strategies, examine the
validity of motion removal, and evaluate the remaining effects of
motion on the quality of the preprocessed fMRI data.

One group-based QC strategy is to select the participant-level
preprocessing method that minimizes a group-level metric of motion.
For example, QC-FC correlation is a commonly used group-level met-
ric in which motion, represented by mean framewise displacement
(FD) over all volumes, is correlated with all possible pair-wise func-
tional connectivity (FC) correlations across participants in a group,
reflecting the extent to which motion may modulate FC (Power,
Schlaggar, & Petersen, 2015). Another strategy, derived from the cen-
tral limit theorem (Paulauskas & Rachkauskas, 1989), is to remove
participant(s) with motion-related features that stand out from the
rest in the group. In (Huang et al., 2019), a motion-related feature,
similarity of FC (SoFC), was introduced, in which the participants with
a mean similarity of less than 2 SDs from the average of the healthy
control or patient group were excluded from further analyses. How-
ever, this participant-level removal of motion effect assumes that the
distributions of motion-related features of groups from different

populations are approximately equivalent; this assumption is violated

by our observation that patients generally have greater motion than
healthy participants. As a consequence, it may introduce systematic
bias, which may be especially pronounced in group comparisons
between patients and controls (Parkes et al., 2018). In this paper, we
suggest a new group-level QC metric, which is an extension of QC-FC
correlations, to quantify how an individual participant's motion affects
the quality of preprocessed fMRI data. Based on this metric, a new
group-based QC strategy is proposed, wherein participants in either
healthy or patient groups will be removed to maximally reduce the
coupling between motion and FC at the group level.

Accordingly, in this paper, first, a new group-based QC metric,
SoFC, is introduced in detail. Following this, the relationship between
head motion, represented by FD and dissimilarity of FC with four
commonly used preprocessing methods, is investigated in two inde-
pendent resting-state fMRI datasets: one consisting of healthy partici-
pants scanned in a GE scanner with longer TR and the other of
chronic back pain (CBP) patients in a Siemens scanner with shorter
TR. Finally, after exploring the effect of removing participants with
the greatest amount of motion in a given group on the SoFC, a new
group-based QC strategy is proposed.

2 | METHODS

21 | Participants
A total of 310 participants from two independent studies were
included. Study 1 (healthy participants) was carried out at Wenzhou
Medical University, Zhejiang, China, and included 167 healthy volun-
teers (83 males, 84 females; age [mean + SD] = 40.9 + 14.1 years old)
who were pain-free for at least 52 weeks prior to recruitment. Study
2 (CBP participants) was carried out at Northwestern University, IL,
and consisted of 143 of CBP patients (71 males, 72 females; age
= 52.5 + 13.6 years old) with pain that persisted for at least 12 weeks
prior to recruitment. Participants were excluded if they (a) were less
than 18 or greater than 85 years old; (b) reported a history of head
injury and/or cerebral disease (e.g., stroke or encephalopathy); (c) had
diabetes or a psychiatric disease; (d) reported a history of brain neuro-
surgical procedures and/or epilepsy; (e) were unable to cooperate
(e.g., psychogenic or cognitively impaired); (f) reported pregnancy,
drug dependence, or drug abuse; (g) were not suitable for MRI scan;
or (h) were enrolled in other clinical trial(s) involving investigational
drug(s).

The studies were approved by the Institutional Review Board of
the Second Affiliated Hospital and Yuying Children's Hospital of Wen-
zhou Medical University, China and of Northwestern University, and

all participants reviewed and signed a written informed consent.

2.2 | MRI scanning parameters

All participants were scanned for structural and resting-state fMRI (rs-

fMRI) and were instructed to keep their eyes open and to remain as



YANG ET AL.

WILEY_L_*

still as possible during acquisition. Healthy participants were scanned
on a 3 Tesla GE-Discovery 750 whole body scanner equipped with an
eight channel-head/neck coil. T1-anatomical brain images were
acquired with the following parameters: voxel size = 1 x 1 x 1 mm?%;
repetition time/echo time (TR/TE) = 7.7/3.4 ms; flip angle = 12°; in-
plane resolution = 256 x 256; slices per volume = 176; field of
view = 256 mm. Rs-fMRI images were acquired on the same day with
the following parameters: TR/TE = 2,500/30 ms; flip angle = 90°;
voxel size = 3.4375 x 3.4375 x 3.5 mmS; in-plane resolution =
64 x 64; number of volumes = 230; number of slices = 42 acquired
with interleaved ordering, which covers the whole brain from the cer-
ebellum to the vertex.

CBP participants were scanned on a clinical 3 Tesla Siemens Mag-
netom Prisma whole body scanner equipped with a 64 channel-head/
neck coil. T1-anatomical brain images were acquired using integrated
parallel imaging techniques (GRAPPA) with the following parameters:
voxel size = 1 x 1 x 1 mm?; TR/TE = 2.3 s/2.40 ms; flip angle = 9°; in-
plane resolution = 256 x 256; slices per volume = 176; field of
view = 256 mm. Rs-fMRI images were acquired on the same day with
the following parameters: TR/TE = 555/22 ms; flip angle = 47°; voxel
size = 2 x2 x2mmS; in-plane resolution = 96 x 104; number of
volumes = 1,110; multiband accelerator = 8; number of slices = 64
acquired with interleaved ordering, which covers the whole brain from
the cerebellum to the vertex.

(@)

264 ROIs 1

BOLD signal
correlation

264

Subjects

BOLD signal
correlation

264

FIGURE 1

2.3 | Measurement of head motion

FD is a measure of head motion of one volume from one time point
to the next, and is calculated as the sum of absolute value of the three
translational displacements (x, y, and z) and the three rotational dis-
placements (pitch, yaw, and roll, in radians); the latter were multiplied
by 50 to convert to arc length displacements in the same units as trans-
lational displacements (i.e, FD = | x| + |y| + |z| +50(a +p +7))
(Power et al., 2014). Mean FD (mFD), calculated as the average FD
across all time points except the first one, represents the extent of head
motion over the duration of the scan.

2.4 | Calculating SoFC within a group

FC represents symmetrical statistical associations among brain regions
of interest (ROls) and is defined as the temporal correlations between
BOLD signals of different ROIs. SoFC represents the resemblance of
FC of one participant to all other participants within a group. Figure 1
depicts the calculation of SoFC within a group comprising N partici-
pants. As shown in Figure 1a, for each participant, 264 ROlIs defined
in (Power et al., 2011) were used to construct ROI-based pairwise
FC. The BOLD signal of each ROI was extracted as the average over
voxels within 10 mm diameter spheres centered at peak coordinates.
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Diagram illustrates main steps required to calculate similarity of functional connectivity within a group. (a) For each participant in a

group comprising N participants, 264 regions of interest (ROls) defined in (Power et al., 2011) were used to construct ROI-based functional
networks. The BOLD signal of each ROI was extracted as an average over voxels within 10 mm diameter spheres centered at peak coordinates.
Following this, a 264 x 264 correlation matrix was generated using Pearson correlation coefficients between BOLD signals. (b) The upper

(or lower) triangular correlation matrix of each participant was transformed into a vector; these vectors were combined to create

(264 x 263)/2 x N matrix, each column of which represents functional connectivity of each participant across all pairs of the 264 ROls.

(c) Correlation coefficients of functional connectivity of N participants were calculated and a N x N matrix was generated; the average of each
column excluding the diagonal was calculated, representing the similarity of each participant's functional connectivity to the rest of the sample
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Following this, a 264 x 264 correlation matrix was generated, con-
sisting of Pearson correlation coefficients between BOLD signals. The
upper (or lower) triangular correlation matrix of each participant was
then transformed into a vector; these vectors were combined to cre-
ate a (264 x 263)/2 x N matrix, each column of which represents FC
of each participant across all pairs of the 264 ROls (Figure 1b). Finally,
correlation coefficients of FC of N participants were calculated and an
N x N matrix was generated. After excluding the diagonal, column
means were calculated to obtain the similarity of each participant's FC

to the rest of the sample (Figure 1).

2.5 | Rs-fMRI data preprocessing

In this study, to explore the relationship between head motion repre-
sented by mFD and SoFC for both healthy and CBP participants and
to investigate the effect of preprocessing methods on the relationship,
four commonly used methods—conventional (Baliki et al., 2012), scrub
(Power et al., 2014), ICA-AROMA (Pruim et al., 2015), and FIX (Salimi-
Khorshidi et al., 2014)—were performed on the same datasets.

As shown in Figure 2, all four preprocessing methods performed
the following common steps: First, using the FMRIB Expert Analysis
Tool (www.fmrib.ox.ac.uk/fsl), MATLB2016a, and Bash Shell Scripting,
we discarded of the first 10-s of images for magnetic field stabiliza-
tion; motion correction; slice-time correction; intensity normalization;
high-pass temporal filtering (0.0075 Hz) for correcting low-frequency
signal drift; and a nonlinear spatial smoothing (using SUSAN;
FWHM = 6 mm). Second, for the conventional approach, after the
remaining volumes were filtered with a band-pass temporal filter
(using Butterworth; 0.008 Hz < f < 0.1 Hz), regressions were per-
formed using the CSF signal averaged over all voxels of the eroded

ventricle region, the averaged WM signal, the averaged global signal
of the whole brain, and the six parameters obtained from intra-modal
motion correction using MCFLIRT; for scrub, motion-volumes were
censored by detecting volumes with (a) an FD larger than 0.5 mm,
(b) a derivative variance root mean square after Z normalization larger
than 2.3, (c) SD after Z normalization larger than 2.3, and (d) scrubbing
above detected and adjacent symmetric 10-s volumes; for ICA-
AROMA, after classing and regressing components that represent
motion-related artifacts by assessing each component as to whether it
exceeded at least one of three criteria: (a) a decision value determined
by a linear discriminant analysis that combines brain edge fractions with
the maximum correlations with motion-correction parameters, (b) 10%
of the CSF fraction, or (c) 35% of the high-frequency content, and
regressions were performed using the CSF signal averaged over all
voxels of eroded ventricle region, averaged WM signal, averaged global
signal of whole brain and the processed image data were filtered with a
band-pass temporal filter (using Butterworth; 0.008 Hz < f < 0.1 Hz) in
the end; for FIX, after automatically classifying and regressing out “bad”
components by applying the classifier derived from training data based
on their spatial and/or temporal features, regression was performed
using the averaged global signal of whole brain, and finally, the
processed image data were filtered with a band-pass temporal filter
(using Butterworth; 0.008 Hz < f < 0.1 Hz). Standard.Rdata provided by
FSL were fed as trained-weight files for FIX-preprocessing of healthy
participants. For CBP participants, self-trained-weights files were sup-
plied to FIX, where components in 10 subjects randomly selected from
the data set were hand classified as either noise or signal components.
Twenty was set as the thresholding of good versus bad components for
both data sets.

All pre-processed rs-fMRI data were registered to MNI_152_2mm
template using FNIRT (ref. https://www.fmrib.ox.ac.uk/datasets/

0) Raw fMRI Data

1) Slice-time Correction
—2) Motion Correction
3) Intensity Normalization

4) Spatial Smoothing
(FWHM = 6 mm)

!

¢5) Temporal Bandpass Filtering i5) ICA-AROMA f5) FIX
(0.008 Hz < f < 0.1 Hz) i6) Nuisance Regression f6) Nuisance Regression (G)
c6) Nuisgnce Regression (WM, CSF, G) f7) Temporal Bandpass Filtering
(Motion Vectors, WM, CSF, G) i7) Temporal Bandpass Filtering (0.008 Hz < f < 0.1 Hz)

(0.008Hz < f < 0.1Hz)

Scrub

Conventional

FIGURE 2 Flowchart of four preprocessing methods
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techrep/tr07ja2/tr07ja2.pdf) for postprocessing. To investigate the
effect of the population template on our findings, all data from China
were also registered to CN200 template and reanalyzed (Yang
et al., 2020).

2.6 | The effects of the greatest-motion
participants on SoFC

In this study, we used two approaches (removal or addition of
greatest-motion participants) to investigate the effects of greatest-
motion participants on SoFC. The first one was to gradually remove
the greatest-motion participants from the study group and estimate
the regression slope between mFD and SoFD in the remaining partici-
pants. The second one was to gradually add greater-motion partici-
pants to a given subgroup consisting of less-motion participants and
then recalculate the SoFCs within its subgroup. Considering that SoFC
is dependent on the size of a given group when individuals are added
nonrandomly (i.e., here, the bigger the size of the group, the lower the
SoFC in the group due to increased variance), the identical number of
participants in the subgroup is necessary for the second approach. To
satisfy this requirement, first, based on the value of mFD, either the
entire healthy or CBP group was divided into two subgroups: those
with greater motion (top 20%) and those with lesser motion (bottom
80%). One participant at a time, we replaced a random lower-motion
participant with the participant with the greatest motion. This was
repeated until all of the high-motion (top 20%) participants were added.
For example, if there are 80 low-motion and 20 high-motion partici-
pants, one of the 80 low-motion participants would be randomly rep-
laced by the participant with the greatest motion; next, one randomly
selected participant from the 79 remaining low-motion participants
would be replaced by the participant with the second-greatest motion;
and so on. The SoFC of each participant in the new “lesser” motion
group was recalculated after a participant was replaced. Finally, only
participants in the lesser motion subgroup were extracted and used for
further analysis (healthy [101 participants] and CBP [85 participants]).
By using this strategy, the effect of gradually adding greater-motion
participants (0-20%) on the SoFCs of participants with lower motion
(60% of lower motion, in that 20% of participants with lower motion
would be replaced by greater-motion participants) could be investigated

while maintaining identical sample sizes.

2.7 | Statistical analyses
The Pearson product-moment correlation coefficient was used to
quantify the strength of the linear relationship between mFD and
SoFC. A negative correlation coefficient with p <.001 represents a
statistically significant association between motion and dissimilar-
ity of FC.

A one-way, repeated-measures analysis of variance (ANOVA) was
used to assess that the SoFC differed statistically significantly across

different percentage of top-motion participants added.

3 | RESULTS

3.1 | Pain patients have greater head motion
Compared with healthy participants, CBP participants had statistically
significantly greater head motion during scanning (tzos = 9.139,
p <.001) (Figure 3a), and the association between motion and pain
intensity (numerical rating scale, 0-100; O = no pain, 100 = worst pain
imaginable) was also statistically significant (r =.178, p =.036)
(Figure 3b); however, neither the effect of sex (t140 = 0.223, p = .823;
Figure 2c) nor age (r = .035, p = .680; Figure 2d) on head motion was
statistically significant. In healthy participants, there existed statisti-
cally significant difference in head motion between female and male
participants (t1¢5 = 3.178, p = .002) (Figure 3e), and age was statisti-
cally significantly correlated with motion (r =.297, p <.001)
(Figure 3f).

3.2 | Statistically significant associations between
motion and dissimilarity of FC in both healthy and CBP
participants

On a group level, the existence of motion effects after preprocessing
was still evident, as indicated by the statistically significant inverse
association between motion represented by mFD and SoFC. In
healthy participants, as shown in Figure 4a,b, this association was
observed in all four preprocessing methods (conventional [r = —.541],
scrub [r = —.495], ICA-AROMA [r = —.504], and FIX [r = —.517] with
MNI152 as a template and conventional [r = —=559], scrub [r = —.521],
ICA-AROMA [r = —.513], and FIX [r = —.532]) with CN200 as a tem-
plate. The population template effect is minor. When the same data
analysis procedure was applied to CBP participants with MNI152 as a
template, as shown in Figure 4c, the results were similar (conventional
[r = =.563], scrub [r = —.639], ICA-AROMA [r = —.595], and FIX [r =
—.607]). To ensure the relationship between mFD and SoFC was not
confounded by age, we performed partial correlations to assess the
relationship between mFD and SoFC independent of age. The results
were robust, even after adjusting for age (r = —.489 [conventional], r =
—.436 [scrubbing], r = —.437 [AROMA], and r = —.454 [FIX] for healthy
participants with MNI152 as a template; r = —.576 [conventionall, r =
—.650 [scrubbing]; r = —.606 [AROMA], and r = —.617 [FIX] for CBP
participant with MNI152 as a template), which implies that while age

is weakly associated with SoFC, it does not share variance with mFD.

3.3 | SoFC derived from scrub is more similar to
that from conventional, than ICA-AROMA or FIX

SoFC derived from scrub is more similar to that from conventional,
than ICA-AROMA or FIX. As shown in Figure 5a, for healthy partici-
pants, the correlations of SoFC between scrub and the three other
preprocessing methods (conventional, ICA-AROMA, and FIX) were
0.965, 0.772, and 0.812, respectively. The same trend was observed
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Pain patients have greater head motion. (a) Chronic back pain (CBP) patients have greater motion than healthy participants

(tzos = 9.139, p < .001). For CBP patients, (b) pain intensity (numerical rating scale, 0-100; O = no pain, 100 = worst pain imaginable) was
statistically significantly correlated with motion (r = .178, p = .036), but (c) there was no statistically significant difference between male and
female (t140 = 0.223, p = .823), and (d) age was not statistically significantly correlated with motion (r = .035, p = .680). For healthy participants,
(e) there was a statistically significant difference between male and female (t145 = 3.178, p = .002), and (f) age was statistically significantly

correlated with motion (r = .297, p < .001)

in CBP participants (Figure 5b) and the correlations of SoFC between
scrub and the three other threes (conventional, ICA-AROMA, and FIX)
were 0.899, 0.882, and 0.755, respectively. In addition, the correlation
of SoFC between ICA-AROMA and FIX-preprocessing was 0.798
(healthy) and 0.759 (CBP).

3.4 | Participants with the greatest motion
determined the strength of the association between
motion and dissimilarity of FC

From the group perspective, there existed statistically significant
associations between motion and dissimilarity of FC in both healthy
and CBP participants. However, the variance of the association was
most from greatest-motion participants. For healthy participants

(Figure 6a solid curves), when the percentage of greatest-motion

participants removed was varied from O to 20, the slope of the
remaining participants gradually changed from -0.7367 (conven-
tional), —0.7279 (scrub), —0.5979 (ICA-AROMA), and —0.6194 (FIX) to
—0.1338 (conventional), —0.1376 (scrub), —0.1663 (ICA-AROMA), and
—0.0905 (FIX). For CBP participants (Figure 6a dotted curves), when
the percentage of greatest-motion participants was varied from 0 to
40, the slope of the remaining participants changed from —1.0187
(conventional), —1.0472 (scrub), —1.1288 (ICA-AROMA), and —1.0222
(FIX) to —0.1584 (conventional), —0.1894 (scrub), —0.1047 (ICA-
AROMA), and -0.1509 (FIX). Moreover, the intersections with the
line of mFD threshold = 0.2 mm (see arrows in Figure 6b) were criti-
cal points for both groups, where the corresponding slope curves
became flat from steep significantly (see arrows in Figure 6a), indi-
cating the linear relationships between motion and dissimilarity of
FC in both healthy and CBP were mostly determined by greatest-
motion participants.
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FIGURE 4 Statistically significant inverse association between mean framewise displacement (mFD) and similarity of functional connectivity
(SoFC) in both healthy and chronic back pain (CBP) participants. (a) In healthy participants, a statistically significant negative correlation was
observed between mFD and SoFC for all four preprocessing methods (p < .001) (conventional [r = —.541], scrub [r = —.495], ICA-AROMA [r =
—.504], and FIX [r = —.517]). (b) When using the CN200 template for healthy participants, a statistically significant negative correlation was
observed between mFD and SoFC for all four preprocessing methods (p < .001) (conventional [r = —.559], scrub [r = —.521], ICA-AROMA [r =
—.513], and FIX [r = —.532]). (c) In CBP participants with MNI152 as the template, a statistically significant negative correlation was observed
between mFD and SoFC for all four preprocessing methods (p < .001) (conventional [r = —.563], scrub [r = —.639], ICA-AROMA [r = —.595], and FIX

[r=-.607])

35 |

SoFC was statistically significantly increased

following removal of top-motion participants

As shown in Figure 6c (the top four solid lines), when the participants

with the greatest motion in healthy group were gradually added from

0 to 20% to randomly ordered lower-motion participants, the results

of one-way, repeated-measures ANOVA revealed a statistically signif-
icant effect of the percentage on the SoFC. (F(10,100) = 316.7, F
(10,100) = 353.3, F(10,100) = 832.1, F(10,100) = 698.7, p < .001 for
conventional, scrub, ICA-AROMA, and FIX-preprocessing, respectively).
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FIGURE 5 Correlation heatmaps of the similarity of functional connectivity derived from conventional, scrub, ICA-AROMA, and FIX-
preprocessing methods. (a) In healthy participants, the correlations of similarity of functional connectivity between scrub and the three other
preprocessing methods (conventional, ICA-AROMA, and FIX) were 0.965, 0.772, and 0.812, respectively. The correlation of similarity of functional
connectivity between ICA-AROMA and FIX-preprocessing was 0.798. (b) In CBP participants, the correlations of similarity of functional
connectivity between scrub and the three other preprocessing methods (conventional, ICA-AROMA, and FIX) were 0.899, 0.882, and 0.755,
respectively. The correlation of similarity of functional connectivity between ICA-AROMA and FIX-preprocessing was 0.759

Bonferroni-corrected post hoc pairwise comparisons revealed that
each pairwise difference was statistically significant (p < .001),
suggesting that the SoFC statistically significantly decreased as a func-
tion of the percentage of greater-motion participants added. This phe-
nomenon was observed in CBP group as well (Figure 6c, the bottom
four dotted lines). When greater-motion participants were added
gradually from 0% to 20% to randomly ordered lower-motion partici-
pants, the effects of the percentage on SoFC were again statistically
significant (F(10,84) = 377.1, F(10,84) = 802.6, F(10,84) = 456.7,
F(10,84) = 536.1, p <.001 for conventional, scrub, ICA-AROMA, and
FIX-preprocessing, respectively). Bonferroni-corrected post hoc pairwise
comparisons revealed that each pairwise difference was statistically sig-
nificant (p < .001), suggesting that the SoFC significantly decreased as a

function of the percentage of greater-motion participants added.

4 | DISCUSSION
Here, we developed and examined a new group-level QC metric to
help control for the effects of head motion on FC. We found that
(a) pain patients had greater motion and (b) dissimilarity of FC
uncovers the influence of participant's motion. Importantly, this rela-
tionship is independent of population, scanner, and preprocessing
method. Participants with the greatest motion determined the
strength of the association between motion and dissimilarity of FC.
Although it is commonly assumed that participants with CBP have
elevated motion accompanied with statistically significantly greater
confounds than healthy participants, to the best of our knowledge,

this study is the first to quantify the effects of head motion and pain

intensity. The results shown in Figure 3 indicate that pain or pain-
related disorders, like anxiety (de Heer et al., 2014), influence head
motion in CBP patients, which was substantial enough that it seems
to dwarf the sex and age effects on motion that existed in healthy
participants. Considering that motion caused by pain or the pain-
related discomfort has a large influence, it is necessary to take preven-
tive strategies; for instance, shortening the duration of scanning
sessions, taking a break before fMRI scanning, paying more attention
and reminding the patients to remain still during scanning, or even
training with a mock MRI to reduce anxiety before scanning (Zaitsev,
Maclaren et al. 2015).

The dissimilarity of FC due to motion represents the dissimilarity
of each participant's FC relative to the rest in sample, indicating
motion-induced BOLD signals increase the distinctiveness of individ-
uals relative to the rest of their sample. At the voxel level, disruption
caused by motion decreases the BOLD signal and the magnitude of
the signal loss is associated with the extent of motion (Satterthwaite
et al,, 2013). In addition, more studies indicate that head motion can
be a neurobiological trait, contributing to the dissimilarity of FC in the
region of default-mode network (Zeng et al., 2014; Zhou et al., 2016).
Thus, preprocessing methods for removing motion-related artifacts
improve fMRI data quality without necessarily totally correcting the
data (Power et al., 2014). At the ROI level, except for those voxels
that share disruption produced by motion, the BOLD signal of an ROI
extracted as an average over its constituent voxels is diminished
because the disruption could extend for tens of seconds and distort
hemodynamic response across voxels, even after motion correction
(Byrge & Kennedy, 2018; Power et al., 2015), in turn introducing spu-

rious common variance across time points from different regions



YANG ET AL.

WILEY_L_*

isce’ F(10,100)=316.7 —s— Healthy Conventional
Healty Convetional  (C) 0.5 — F(10,100)=353.3 —— Healthy Scrub
Healty [CACAROMA F(10,100)=832.1 —— Healthy ICA-AROMA
Healthy FIX
o Convertionl e oo F00100=6987 < HealthyFIX
g CBP Scrub E
a4 Coprn oM Z 0.4
(o]
© 06 7 % I\}H}Hi\z—z—{
€ — Healthy =
£ 0.4 cBp EosdEmmwe = o F(10,84)=377.1 =~ CBP Conventional
a = BilECES0ES il T EEEEE T F(10,84)=8026 CBP Scrub
€ F(10,84)=456.7 s CBP ICA-AROMA
Tr s s s rx e eqg 10845361 CBP FIX
02 L : : : .
0 20 40 60 80 100 0 5 10 15 20

Percentage of Top-motion Participants Removed Percentage of Top-motion Participants added

FIGURE 6 Participants with the greatest motion determined the strength of the association between motion and dissimilarity of functional
connectivity (a) In healthy participants (solid curves), when the percentage of greatest-motion participants removed was varied from O to 20, the
slope of the remaining participants gradually changed from —0.7367 (conventional), —0.7279 (scrub), —0.5979 (ICA-AROMA), and —0.6194 (FIX) to
—0.1338 (conventional), —0.1376 (scrub), —0.1663 (ICA-AROMA), and —0.0905 (FIX). In chronic back pain (CBP) participants (dotted curves), when
the percentage of greatest-motion participants was varied from O to 40, the slope of the remaining participants changed from —1.0187
(conventional), —1.0472 (scrub), —1.1288 (ICA-AROMA), and —1.0222 (FIX) to —0.1584 (conventional), —0.1894 (scrub), —0.1047 (ICA-AROMA), and
—0.1509 (FIX). (b) Depicted the relationship between the percentage of the greatest-motion participants removed and the mFD above which the
corresponding participants were removed from the study group and the regression slope between mFD and SoFD in the remaining participants
were estimated. CBP had higher mFD than healthy at the same percentage. The intersections with the line of mFD = 0.2 mm (arrows) were
critical points for both groups, where the corresponding slope curves (see arrows in (a) became flat from steep significantly). (c) In healthy
participants (the top four solid lines), when participants with the greatest motion were gradually added from O to 20% to randomly ordered
bottom-motion participants, the results of one-way, repeated-measures analysis of variance (ANOVA) revealed a statistically significant effect of
the percentage on the (F(10,100) = 316.7, F(10,100) = 353.3, F(10,100) = 832.1, F(10,100) = 698.7, p < .001 for conventional, scrub, ICA-AROMA,
and FIX-preprocessing, respectively). Bonferroni-corrected post hoc pairwise comparisons revealed that each pairwise difference was statistically
significant (p < .001), suggesting that the similarity of functional connectivity significantly decreased as a function of the percentage of greatest-
motion participants added. Similarly, in CBP participants (the bottom four dotted lines), when greatest-motion participants were added gradually

from O to 20% to randomly ordered lower-motion participants, the results of one-way, repeated-measures ANOVA revealed a statistically

significant effect of the percentage on SoFC (F(10,84) = 377.1, F(10,84) =

802.6, F(10,84) = 456.7, F(10,84) =

536.1, p < .001 for conventional,

scrub, ICA-AROMA, and FIX-preprocessing, respectively). Bonferroni-corrected post hoc pairwise comparisons revealed that each pairwise
difference was statistically significant (p < .001), suggesting that the similarity of functional connectivity significantly decreased as a function of

the percentage of top-motion participants added

(Caballero-Gaudes & Reynolds, 2017). As a result, at the participant
level, the strength of FC, calculated using Pearson correlation coeffi-
cients between ROI BOLD signals, decreases accordingly, except for
ROls that are (a) close and prone to motion, or (b) are distant but with
similar motion artifacts (Power et al., 2015). In the end, this disruption
due to motion is amplified by dissimilarity of FC at group level, which
is evidenced by Figure 3, and independent of participant population,
scanner type, or preprocessing method. The observation that dissimi-
larity of FC reflects the effect of a participant's motion at the group
level reemphasizes the impairment of motion to quality of fMRI data
even though the data has been preprocessed at participant level. Such
findings indicate the necessity of other motion-removal methods, like
prospective motion correction (Hoinkiss et al., 2019; Todd, Josephs,
Callaghan, Lutti, & Weiskopf, 2015; Zaitsev et al., 2017) or multiecho
imaging techniques (Power et al., 2018).

By selecting a suitable percentage of participants with greater
motion (e.g., the percentage corresponding to line of mFD = 0.2 mm
shown in Figure 6a,b), the slope of the correlation between mFD and

dissimilarity of FC in the remaining participants decreases substantially

for both groups. This characteristic implies that there may exist multiple
sources of motion-related noise after preprocessing. The participants
with lower motion (mFD <0.2 mm in our data) may contain similar
noise structure, increasing the similarity in FC. Concurrently, the con-
founds present in the participants with high motion are qualitatively
different from those in low-motion participants, indicating similarity
will always be lower for high-motion participants because high-
motion has produced their unique noise signatures, irrespective of
what preprocessing method is deployed. Incorporating the results
shown in Figure 6c that the SoFC increased as a function of the par-
ticipants removed, for fMRI studies that contain large-scale images
of participants and in which sample size is not a considerable con-
cern, like the UK Biobank (Alfaro-Almagro et al., 2018) or German
National Cohort (German National Cohort, 2014), the greatest-
motion participants, which account for the greatest effect on FC, can
be removed from the group. We suggest that if a group data set is
large enough, participants with large motion in the data set be
removed to make the regression slope between mean FD and SoFC

as flat as possible.
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One limitation of our study was the different TRs between
groups, which made it difficult to directly compare FD measures.
Moreover, the long TR time in the control group precluded assess-
ments of subtle variations in head motion. In the future, we will sys-
tematically investigate how preprocessing methods affect SoFC and
how distance- and location-distributions of FC vary and interact with
SoFC as higher-motion participants are removed.

In conclusion, we found that dissimilarity of FC uncovers the
influence of participant's motion, and this relationship is indepen-
dent of population, scanner, and preprocessing method. Partici-
pants with the greatest motion determined the strength of the
association between motion and dissimilarity of FC. A new group-
based QC strategy is proposed: if a group data set is large enough,
participants with large motion in the data set be removed to make
the regression slope between mean FD and SoFC as flat as

possible.
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